888 resultados para Collective cell migration
Resumo:
Clearance of allergic inflammatory cells from the lung through matrix metalloproteinases (MMPs) is necessary to prevent lethal asphyxiation, but mechanistic insight into this essential homeostatic process is lacking. In this study, we have used a proteomics approach to determine how MMPs promote egression of lung inflammatory cells through the airway. MMP2- and MMP9-dependent cleavage of individual Th2 chemokines modulated their chemotactic activity; however, the net effect of complementing bronchoalveolar lavage fluid of allergen-challenged MMP2(-/-)/MMP9(-/-) mice with active MMP2 and MMP9 was to markedly enhance its overall chemotactic activity. In the bronchoalveolar fluid of MMP2(-/-)/MMP9(-/-) allergic mice, we identified several chemotactic molecules that possessed putative MMP2 and MMP9 cleavage sites and were present as higher molecular mass species. In vitro cleavage assays and mass spectroscopy confirmed that three of the identified proteins, Ym1, S100A8, and S100A9, were substrates of MMP2, MMP9, or both. Function-blocking Abs to S100 proteins significantly altered allergic inflammatory cell migration into the alveolar space. Thus, an important effect of MMPs is to differentially modify chemotactic bioactivity through proteolytic processing of proteins present in the airway. These findings provide a molecular mechanism to explain the enhanced clearance of lung inflammatory cells through the airway and reveal a novel approach to target new therapies for asthma.
Resumo:
Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.
Resumo:
Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies with less than 5% of five year survival rate. New molecular markers and new therapeutic targets are urgently needed for patients with PDA. Oncogenic receptor tyrosine kinase Axl has been reported to be overexpressed in many types of human malignancies, including diffuse glioma, melanoma, osteosarcoma, and carcinomas of lung, colon, prostate, breast, ovary, esophagus, stomach, and kidney. However, the expression and functions of Axl in PDA are unclear. We hypothesized that Axl contributes to the development and progression of PDA. We examined Axl expression in 54 human PDA samples and their paired benign pancreatic tissue by immunohistochemistry, we found that Axl was overexpressed in 70% of stage II PDAs, but only 22% of benign ducts (P=0.0001). Axl overexpression was associated with higher frequencies of distant metastasis and was an independent prognostic factor for both poor overall and recurrence-free survivals in patients with stage II PDA (p = 0.03 and 0.04). Axl silencing by shRNA in pancreatic cancer cell lines, panc-28 and Panc-1, decreased tumor cell migration and invasion and sensitized PDA cells to apoptosis stimuli such as γ-irradiation and serum starvation. In addition, we found that Axl-mediated Akt and NF-κB activation and up regulation of MMP2 were involved in the invasion, migration and survival of PDA cells. Thus, we demonstrate that Axl plays an important role in the development and progression of PDA. Targeting Axl signaling pathway may represent a new approach for the treatment of PDA. To understand the molecular mechanisms of Axl overexpression in PDA, we found that Axl expression was down-regulated by hematopoietic progenitor kinase 1 (HPK1), a newly identified tumor suppressor in PDA. HPK1 is lost in over 95% of PDAs. Restoration of HPK1 in PDA cells down-regulated Axl expression. HPK1-mediated Axl degradation was inhibited by leupeptin, baflomycin A1, and monensin, suggesting that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway. HPK1 interacted with and phosphorylated dynamin, a critical component of endocytosis pathway. Overexpression of dominant negative form of dynamin blocked the HPK1-mediated Axl degradation. Therefore we concluded that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway and loss of HPK1 expression may contribute to Axl overexpression in PDAs.
Resumo:
The molecular mechanisms that mediate endometrial cancer invasion and metastasis remain poorly understood. This is a significant clinical problem, as there is no definitive cure for metastatic disease. The purinergic pathway’s generation of adenosine and its activation of the adenosine receptor A2B (A2BR) induces cell-cell adhesion to promote barrier function. This barrier function is known to be important in maintaining homeostasis during hypoxia, trauma, and sepsis. Loss of this epithelial barrier function provides a considerable advantage for carcinoma progression, as loss of cell-cell adhesions supports proliferation, aberrant signaling, epithelial-to-mesenchymal transition, invasion, and metastasis. The present work provides strong evidence that CD73-generated adenosine actively promotes cell-cell adhesion in carcinoma cells by filopodia-induced zippering. Adenosine-generating ecto-enzyme, CD73, was down-regulated in moderately- and poorly-differentiated, invasive, and metastatic endometrial carcinomas. CD73 expression and enzyme activity in normal endometrium and endometrial carcinomas was significantly correlated to the epithelial phenotype. Barrier function in normal epithelial cells of the endometrium was dependent on stress-induced generation of adenosine by CD73 and adenosine’s activation of A2BR. This same mechanism inhibited endometrial carcinoma cell migration and invasion. Finally, adenosine’s activation of A2BR induced the formation of filopodia that promoted the re-forming of cell-cell adhesions in carcinoma cells. Overall, these studies identified purinergic pathway-induced filopodia to be a novel mechanism of adenosine’s barrier function and a mechanism that has to be avoided/down-regulated by endometrial carcinoma cells attempting to lose attachment with their neighboring cells. These results provide insight into the molecular mechanisms of endometrial cancer invasion. In addition, because loss of cell-cell adhesions has been closely linked to therapy resistance in cancer, these results provide a rational clinical strategy for the re-establishment of cell-cell adhesions to potentially increase therapeutic sensitivity. In contrast to other molecular mechanisms regulating cell-cell adhesions, the purinergic pathway is clinically druggable, with agonists and antagonists currently being tested in clinical trials of various diseases.
Resumo:
Morphogenesis is the process by which the 3-dimensional structure of the developing embryo takes shape. We are studying xlcaax-1, a gene whose product can be used as a molecular marker for several morphogenetic events. We report here the cellular and subcellular localization of the xlcaax-1 protein during development of Xenopus laevis. Whole mount immunocytochemistry and immunoperoxidase staining of tissue sections showed that during development the xlcaax-1 protein accumulation was coincident with the differentiation of the epidermis, pronephros and mesonephros. In the pronephros and mesonephros the xlcaax-1 protein was localized to the basolateral membrane of differentiated tubule epithelial cells. Thus, the xlcaax-1 protein served as a marker for tubule formation and polarization during Xenopus kidney development. Xlcaax-1 may also be used as a marker for the functional differentiation of the epidermis and the epidermally derived portions of the lens and some cranial nerves. The xlcaax-1 protein was most abundant in kidney and immunogold EM analysis showed that the xlcaax-1 protein was highly enriched in the basal infoldings of the basolateral membrane of the epithelial cells in adult kidney distal tubules. The xlcaax-1 protein was also localized in other ion transporting epithelia. The localization pattern and preliminary functional assays of xlcaax-1 suggest that the protein may function in association with an ion transport channel or pump.^ Cell migration and cell-cell interactions play important roles in numerous processes during morphogenesis. One of these is the formation of the pronephric (wolffian) duct (PD), which connects the pronephros to the cloaca. It is currently accepted that in most amphibians the pronephric duct is formed by active migration of the pronephric duct rudiment (PDR) cells along a pre-determined pathway. However, there is evidence that in Xenopus, the PD may be formed entirely by in situ segregation of cells out of the lateral mesoderm. In this study, we showed, using PDR ablation and X. laevis - X. borealis chimeras, that PD elongation in Xenopus required both active cell migration and an induced recruitment of cells from the posterior lateral plate mesoderm. We also showed that PDR cell migration was limited to only a few stages during development and that this temporal control is due, at least in part, to changes in the competence of the PD pathway to support cell migration. In addition, our data suggested that an alkaline phosphatase (APase) adhesion gradient may be involved in determining this competence. ^
Resumo:
Viscum album L. lipophilic extract (VALE) contains pharmacologically active pentacyclic triterpenes that are known to exhibit immunomodulatory, antitumor, and wound healing activity. Preliminary clinical observations indicate that VALE was able to influence cutaneous wound healing in vivo. The objective of this study was to investigate wound closure related properties of VALE in vitro. As measured in a wound healing assay, VALE and its predominant triterpene oleanolic acid (OA) significantly and dose dependently promoted the migration of NIH/3T3 fibroblasts in vitro, thereby leading to an enhanced wound closure. Compared to the negative control, maximal stimulation by 26.1% and 26.2%, respectively, was attained with 10 μg/mL VALE and 1 μg/mL OA. Stimulation of proliferation in NIH/3T3 fibroblasts by VALE and OA could be excluded. At higher concentrations both substances affected proliferation and viability of NIH/3T3 fibroblasts and HaCat keratinocytes. In the toxic range of concentrations of VALE and OA, migration of NIH/3T3 fibroblasts was suppressed. The extent of the stimulatory effect on cell migration of VALE quite closely corresponded to the effect expected by the concentrations of OA contained in the crude extract VALE. These data support the casual observation that Viscum album L. lipophilic extract might modulate wound healing related processes in vivo.
Resumo:
The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells (HSC). Inhibition of receptor tyrosine kinase (RTK) signaling showed promise in the treatment of hepatocellular carcinoma. However, there is a lack of knowledge about the effects of RTK inhibitors on the tumor supportive cells. We performed in vitro experiments to study whether Sunitinib, a platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) RTKs' inhibitor, could block both activated HSC functions and angiogenesis and thus prevent the progression of cirrhotic liver to hepatocellular carcinoma. In immortalized human activated HSC LX-2, treatment with Sunitinib 100 nM blocked collagen synthesis by 47%, as assessed by Sirius Red staining, attenuated HSC contraction by 65%, and reduced cell migration by 28% as evaluated using a Boyden's chamber, without affecting cell viability, measured by Trypan blue staining, and apoptosis, measured by propidium iodide (PI) incorporation assay. Our data revealed that Sunitinib treatment blocked the transdifferentiation of primary human HSC (hHSC) to activated myofibroblast-like cells by 65% without affecting hHSC apoptosis and migration. In in vitro angiogenic assays, Sunitinib 100 nM reduced endothelial cells (EC) ring formation by 46% and tube formation by 68%, and decreased vascular sprouting in aorta ring assay and angiogenesis in vascular bed of chick embryo. In conclusion, the present study demonstrates that the RTK inhibitor Sunitinib blocks the activation of HSC and angiogenesis suggesting its potential as a drug candidate in pathological conditions like liver fibrosis and hepatocellular carcinoma.
Resumo:
Memo is a conserved protein that was identified as an essential mediator of tumor cell motility induced by receptor tyrosine kinase activation. Here we show that Memo null mouse embryonic fibroblasts (MEFs) are impaired in PDGF-induced migration and this is due to a defect in sphingosine-1-phosphate (S1P) signaling. S1P is a bioactive phospholipid produced in response to multiple stimuli, which regulates many cellular processes. S1P is secreted to the extracellular milieu where it exerts its function by binding a family of G-protein coupled receptors (S1PRs), causing their activation in an autocrine or paracrine manner. The process, termed cell-autonomous S1PR signaling, plays a role in survival and migration. Indeed, PDGF uses cell-autonomous S1PR signaling to promote cell migration; we show here that this S1P pathway requires Memo. Using vascular endothelial cells (HUVECs) with Memo knock-down we show that their survival in conditions of serum-starvation is impaired. Furthermore, Memo loss in HUVECs causes a reduction of junctional VE-cadherin and an increase in sprout formation. Each of these phenotypes is rescued by S1P or S1P agonist addition, showing that Memo also plays an important role in cell-autonomous S1PR signaling in endothelial cells. We also produced conventional and endothelial cell-specific conditional Memo knock-out mouse strains and show that Memo is essential for embryonic development. Starting at E13.5 embryos of both strains display bleeding and other vascular problems, some of the phenotypes that have been described in mouse strains lacking S1PRs. The essential role of Memo in embryonic vascular development may be due in part to alterations in S1P signaling. Taken together our results show that Memo has a novel role in the S1P pathway and that Memo is needed to promote cell-autonomous S1PR activation.
Resumo:
Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.
Resumo:
Macrophages regulate lymphatic vasculature development; however, the molecular mechanisms regulating their recruitment to developing, and adult, lymphatic vascular sites are not known. Here, we report that resting mice deficient for the inflammatory chemokine-scavenging receptor, ACKR2, display increased lymphatic vessel density in a range of tissues under resting and regenerating conditions. This appears not to alter dendritic cell migration to draining lymph nodes but is associated with enhanced fluid drainage from peripheral tissues and thus with a hypotensive phenotype. Examination of embryonic skin revealed that this lymphatic vessel density phenotype is developmentally established. Further studies indicated that macrophages and the inflammatory CC-chemokine CCL2, which is scavenged by ACKR2, are associated with this phenotype. Accordingly, mice deficient for the CCL2 signalling receptor, CCR2, displayed a reciprocal phenotype of reduced lymphatic vessel density. Further examination revealed that proximity of pro-lymphangiogenic macrophages to developing lymphatic vessel surfaces is increased in ACKR2-deficient mice and reduced in CCR2-deficient mice. Therefore, these receptors regulate vessel density by reciprocally modulating pro-lymphangiogenic macrophage recruitment, and proximity, to developing, resting and regenerating lymphatic vessels.
Resumo:
Eph receptors and their ligands (ephrins) play an important role in axonal guidance, topographic mapping, and angiogenesis. The signaling pathways mediating these activities are starting to emerge and are highly cell- and receptor-type specific. Here we demonstrate that activated EphB1 recruits the adaptor proteins Grb2 and p52Shc and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. EphB1-mediated increase of cell migration was abrogated by the MEK inhibitor PD98059 and Src inhibitor PP2. In contrast, cell adhesion, which we previously showed to be c-jun NH2-terminal kinase (JNK) dependent, was unaffected by ERK1/2 and Src inhibition. Expression of dominant-negative c-Src significantly reduced EphB1-dependent ERK1/2 activation and chemotaxis. Site-directed mutagenesis experiments demonstrate that tyrosines 600 and 778 of EphB1 are required for its interaction with c-Src and p52Shc. Furthermore, phosphorylation of p52Shc by c-Src is essential for its recruitment to EphB1 signaling complexes through its phosphotyrosine binding domain. Together these findings highlight a new aspect of EphB1 signaling, whereby the concerted action of c-Src and p52Shc activates MAPK/ERK and regulates events involved in cell motility.
Resumo:
Developmental assembly of the renal microcirculation is a precise and coordinated process now accessible to experimental scrutiny. Although definition of the cellular and molecular determinants is incomplete, recent findings have reframed concepts and questions about the origins of vascular cells in the glomerulus and the molecules that direct cell recruitment, specialization and morphogenesis. New findings illustrate principles that may be applied to defining critical steps in microvascular repair following glomerular injury. Developmental assembly of endothelial, mesangial and epithelial cells into glomerular capillaries requires that a coordinated, temporally defined series of steps occur in an anatomically ordered sequence. Recent evidence shows that both vasculogenic and angiogenic processes participate. Local signals direct cell migration, proliferation, differentiation, cell-cell recognition, formation of intercellular connections, and morphogenesis. Growth factor receptor tyrosine kinases on vascular cells are important mediators of many of these events. Cultured cell systems have suggested that basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) promote endothelial cell proliferation, migration or morphogenesis, while genetic deletion experiments have defined an important role for PDGF beta receptors and platelet-derived growth factor (PDGF) B in glomerular development. Receptor tyrosine kinases that convey non-proliferative signals also contribute in kidney and other sites. The EphB1 receptor, one of a diverse class of Eph receptors implicated in neural cell targeting, directs renal endothelial migration, cell-cell recognition and assembly, and is expressed with its ligand in developing glomeruli. Endothelial TIE2 receptors bind angiopoietins (1 and 2), the products of adjacent supportive cells, to signals direct capillary maturation in a sequence that defines cooperative roles for cells of different lineages. Ultimately, definition of the cellular steps and molecular sequence that direct microvascular cell assembly promises to identify therapeutic targets for repair and adaptive remodeling of injured glomeruli.
Resumo:
AIM The local delivery of growth factors via gene therapy has gained tremendous awareness in recent years due to their sustained growth factor delivery to target tissues. The aim of this study was to fabricate and investigate a scaffold able to release growth factors via gene therapy for the repair of periodontal tissues. MATERIALS AND METHODS Novel mesoporous bioglass (MBG)/silk fibrin scaffold combined with BMP7 and/or PDGF-B adenovirus was fabricated and tested in vitro for cell migration, proliferation and differentiation. Furthermore, acute-type buccal dehiscence periodontal defects (mesiodistal width × depth: 5 × 5 mm) were created on the buccal portion of the maxillary premolars in five normal male beagle dogs (12 months old, 15.0 ± 2.0 kg) and histologically examined for periodontal regeneration following implantation of the following five groups: (1) no scaffold, (2) MBG/silk scaffold alone, (3) scaffold + adPDGF-B, (4) scaffold + adBMP7, (5) scaffold + adPDGF-b + adBMP7. RESULTS In vitro findings demonstrated that adPDGF-B was able to rapidly recruit periodontal ligament (PDL) cells over sixfold more effectively than adBMP7, whereas adBMP7 was more able to induce osteoblast differentiation of PDL cells. In vivo findings demonstrate that scaffolds loaded with adPDGF-B were able to partially regenerate the periodontal ligament while adBMP7 scaffolds primarily improved new bone formation. The combination of both adPDGF-B and adBMP7 synergistically promoted periodontal regeneration by allowing up to two times greater regeneration of the periodontal ligament, alveolar bone and cementum when compared to each adenovirus used alone. CONCLUSIONS Although both PDGF-B and BMP7 are individually capable of promoting periodontal regeneration to some degree, their combination synergistically promotes wound healing in acute-type buccal dehiscence periodontal defects when delivered simultaneously. This study demonstrates the promise for successful delivery of low-cost, effective growth factor delivery via gene therapy for the treatment of periodontal defects.
Resumo:
Since the immunochemical identification of the bullous pemphigoid antigen 230 (BP230) as one of the major target autoantigens of bullous pemphigoid (BP) in 1981, our understanding of this protein has significantly increased. Cloning of its gene, development and characterization of animal models with engineered gene mutations or spontaneous mouse mutations have revealed an unexpected complexity of the gene encoding BP230. The latter, now called dystonin (DST), is composed of at least 100 exons and gives rise to three major isoforms, an epithelial, a neuronal and a muscular isoform, named BPAG1e (corresponding to the original BP230), BPAG1a and BPAG1b, respectively. The various BPAG1 isoforms play a key role in fundamental processes, such as cell adhesion, cytoskeleton organization, and cell migration. Genetic defects of BPAG1 isoforms are the culprits of epidermolysis bullosa and complex, devastating neurological diseases. In this review, we summarize recent advances of our knowledge about several BPAG1 isoforms, their role in various biological processes and in human diseases.
Resumo:
INTRODUCTION During dentinogenesis, growth factors become entrapped in the dentin matrix that can later be released by demineralization. Their effect on pulpal stem cell migration, proliferation, and differentiation could be beneficial for regenerative endodontic therapies. However, precondition for success, as for conventional root canal treatment, will be sufficient disinfection of the root canal system. Various irrigation solutions and intracanal dressings are available for clinical use. The aim of this study was 2-fold: to identify a demineralizing solution suitable for growth factor release directly from dentin and to evaluate whether commonly used disinfectants for endodontic treatment will compromise this effect. METHODS Dentin disks were prepared from extracted human teeth and treated with EDTA or citric acid at different concentrations or pH for different exposure periods. The amount of transforming growth factor-β1 (TGF-β1), fibroblast growth factor 2, and vascular endothelial growth factor were quantified via enzyme-linked immunosorbent assay and visualized by gold labeling. Subsequently, different irrigation solutions (5.25% sodium hypochloride, 0.12% chlorhexidine digluconate) and intracanal dressings (corticoid-antibiotic paste, calcium hydroxide: water-based and oil-based, triple antibiotic paste, chlorhexidine gel) were tested, and the release of TGF-β1 was measured after a subsequent conditioning step with EDTA. RESULTS Conditioning with 10% EDTA at pH 7 rendered the highest amounts of TGF-β1 among all test solutions. Fibroblast growth factor 2 and vascular endothelial growth factor were detected after EDTA conditioning at minute concentrations. Irrigation with chlorhexidine before EDTA conditioning increased TGF-β1 release; sodium hypochloride had the opposite effect. All tested intracanal dressings interfered with TGF-β1 release except water-based calcium hydroxide. CONCLUSIONS Growth factors can be released directly from dentin via EDTA conditioning. The use of disinfecting solutions or medicaments can amplify or attenuate this effect.