994 resultados para Collaborative Software


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Maternal-infant transmission of hepatitis B virus (HBV) during birth carries a high risk for chronic HBV infection in infants with frequent subsequent development of chronic disease. This can be efficiently prevented by early immunization of exposed newborns. The purpose of this study was to determine the compliance with official recommendations for prevention of perinatal HBV transmission in hepatitis B surface antigen (HBsAg) exposed infants. METHODS: Records of pregnant women at 4 sites in Switzerland, admitted for delivery in 2005 and 2006, were screened for maternal HBsAg testing. In HBsAg-exposed infants, recommended procedures (postnatal active and passive immunization, completion of immunization series, and serological success control) were checked. RESULTS: Of 27,131 women tested for HBsAg, 194 (0.73%) were positive with 196 exposed neonates. Of these neonates, 143 (73%) were enrolled and 141 (99%) received simultaneous active and passive HBV immunization within 24 hours of birth. After discharge, the HBV immunization series was completed in 83%. Only 38% of children were tested for anti-HBs afterwards and protective antibody values (>100 U/L) were documented in 27% of the study cohort. No chronically infected child was identified. Analysis of hospital discharge letters revealed significant quality problems. CONCLUSIONS: Intensified efforts are needed to improve the currently suboptimal medical care in HBsAg-exposed infants. We propose standardized discharge letters, as well as reminders to primary care physicians with precise instructions on the need to complete the immunization series in HBsAg-exposed infants and to evaluate success by determination of anti-HBs antibodies after the last dose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La formació de traductors implica l´ús de procediments i eines que permetin els estudiants familiaritzar-se amb contextos professionals. El software lliure especialitzat inclou eines de qualitat professional i procediments accessibles per a les institucions acadèmiques i els estudiants a distància que treballen a casa seva. Els projectes reals que utilitzen software lliure i traducció col·laborativa (crowdsourcing) constitueixen recursos indispensables en la formació de traductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Debido a la necesidad de diferenciarse y hacer frente a la competencia, las empresas han apostado por desarrollar operaciones que den valor al cliente, por eso muchas de ellas han visto en las herramientas lean la oportunidad para mejorar sus operaciones. Esta mejora implica la reducción de dinero, personas, equipos grandes, inventario y espacio, con dos objetivos: eliminar despilfarro y reducir la variabilidad. Para conseguir los objetivos estratégicos de la empresa es imprescindible qué éstos estén alineados con los planes de la gerencia a nivel medio y a su vez con el trabajo realizado por los empleados para asegurar que cada persona está alineada en la misma dirección y al mismo tiempo. Ésta es la filosofía de la planificación estratégica. Por ello uno de los objetivos de este proyecto será el desarrollar una herramienta que facilite la exposición de los objetivos de la empresa y la comunicación de los mismos a todos los niveles de la organización para a partir de ellos y tomando como referencia la necesidad de reducir inventarios en la cadena de suministro se realizará un estudio de la producción de un componente de control del aerogenerador para conseguir nivelarla y reducir su inventario de producto terminado. Los objetivos particulares en este apartado serán reducir el inventario en un 28%, nivelar la producción reduciendo la variabilidad del 31% al 24%, mantener un stock máximo de 24 unidades garantizando el suministro ante una demanda variable, incrementar la rotación del inventario en un 10% y establecer un plan de acción para reducir el lead time entre un 40-50%. Todo ello será posible gracias a la realización del mapa de valor presente y futuro para eliminar desperdicios y crear un flujo continuo y el cálculo de un supermercado que mantenga el stock en un nivel óptimo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la era digital actual, Internet forma parte de nuestras vidas, y ha aportado cambios a lasociedad globalizada. Algunos de estos cambios nos permiten nuevas formas de relacionarnos y degestionar el conocimiento, dando sentido al término que hoy entendemos como sociedad-red.Por eso, en el entorno que nos envuelve existen continuamente acciones colaborativas globales quefomentan la comunicación y se comparte información de diversos tipos, con la finalidad deaprender y mantenerse constantemente informado. Específicamente, los centros educativos no sequedan al margen ya que requiere preparar estudiantes para esta sociedad.Estos cambios en la sociedad presentan grandes desafíos para el centro educativo, que nopermiten ser afrontados solamente desde el aula. Los centros requieren adaptarse a un modelocompatible con la sociedad-red, y por ello, se sugieren un modelo centro-red, que presente unaestructura de una organización compatible con la era en el que estamos inmersos.Las redes de colaboración en los centros permite intercambiar información y aportar valor a laeducación con el objetivo de la mejora educativa. En este sentido, los centros educativos debendisponer de características que permitan ser flexibles, adaptarse a los agentes y organizaciones quele envuelven. Pero la estructura actual de un centro educativo es rígida y por tanto esta evoluciónrepresenta uno de los mayores desafíos para el sistema educativo.En esta linea, en los centros de Formación Profesional existe una tendencia hacia modeloscolaborativos con el tejido empresarial, entre otros agentes, y es en este punto donde este proyectopretende centrar el foco de la investigación. Con más exactitud, en la creación de una red decolaboración con el agente que el centro educativo seleccione.Específicamente las TIC forman un papel esencial, y se deben poner al servicio del problemaque apuntábamos para ayudar a solventarlo. En este sentido, es adecuado un diseño del artefactocon Software Libre que tiene múltiples beneficios para este objetivo, pero que destacamos el que ami parecer es el más importante; la vinculación con la filosofía de compartir el conocimiento, quegarantiza la simbiosis con la red colaborativa y es por esta razón que el tema de la investigación esrelevante para el centro educativo.Tal y como se mencionaba previamente, las TIC pueden ayudar a fomentar la red colaborativa,pero no sólo el artefacto TIC generado en este proyecto debe cumplir características como laflexibilidad, también es crítico que el centro educativo y los agentes de la red interioricen la culturacolaborativa en sus acciones con la implicación y compromiso que se requiere. Pero como podemosPágina 6Universitat Oberta de Catalunya Trabajo Final de Máster - Software Libreimaginar, ese cambio de cultura, no es una tarea sencilla y presenta problemas. Para mitigarlos yfomentar la cultura en red, se requieren procesos específicos que permitan incorporarla en la medidade lo posible. Para ello, la combinación de la innovación sistémica y el diseño de la investigación eneducación resultan metodologías apropiadas.Por eso, investigaremos durante este proceso cómo las redes de colaboración y el SoftwareLibre permiten adaptar el centro al entorno, cómo pueden ayudar al centro a potenciar la FormaciónProfesional y garantizar la durabilidad de las acciones, con el objetivo que perdure el conocimientoy la propia red de colaboración para una mejora educativa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto busca analizar, diseñar e implementar una nueva solución de telefonía para el Centro Social de Oficiales de la Policía Nacional contemplando la posibilidad de optar por una migración hacia un sistema VoIP bajo software libre con Asterisk. En consecuencia, se deben evaluar las tecnologías actuales buscando proveer nuevas funcionalidades en el servicio telefónico generando bajos costos en su implementación, funcionamiento y mantenimiento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orchestration of collaborative learning processes in face-to-facephysical settings, such as classrooms, requires teachers to coordinate students indicating them who belong to each group, which collaboration areas areassigned to each group, and how they should distribute the resources or roles within the group. In this paper we present an Orchestration Signal system,composed of wearable Personal Signal devices and an Orchestration Signal manager. Teachers can configure color signals in the manager so that they are transmitted to the wearable devices to indicate different orchestration aspects.In particular, the paper describes how the system has been used to carry out a Jigsaw collaborative learning flow in a classroom where students received signals indicating which documents they should read, in which group they were and in which area of the classroom they were expected to collaborate. The evaluation results show that the proposed system facilitates a dynamic, visual and flexible orchestration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a customizable system used to develop a collaborative multi-user problem solving game. It addresses the increasing demand for appealing informal learning experiences in museum-like settings. The system facilitates remote collaboration by allowing groups of learners tocommunicate through a videoconferencing system and by allowing them to simultaneously interact through a shared multi-touch interactive surface. A user study with 20 user groups indicates that the game facilitates collaboration between local and remote groups of learners. The videoconference and multitouch surface acted as communication channels, attracted students’ interest, facilitated engagement, and promoted inter- and intra-group collaboration—favoring intra-group collaboration. Our findings suggest that augmentingvideoconferencing systems with a shared multitouch space offers newpossibilities and scenarios for remote collaborative environments and collaborative learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manual describes how to use the Iowa Bridge Backwater software. It also documents the methods and equations used for the calculations. The main body describes how to use the software and the appendices cover technical aspects. The Bridge Backwater software performs 5 main tasks: Design Discharge Estimation; Stream Rating Curves; Floodway Encroachment; Bridge Backwater; and Bridge Scour. The intent of this program is to provide a simplified method for analysis of bridge backwater for rural structures located in areas with low flood damage potential. The software is written in Microsoft Visual Basic 6.0. It will run under Windows 95 or newer versions (i.e. Windows 98, NT, 2000, XP and later).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Collaborative quality improvement programs have been successfully used to manage chronic diseases in adults and acute lung complications in premature infants. Their effectiveness to improve pain management in acute care hospitals is currently unknown. The purpose of this study was to determine whether a collaborative quality improvement program implemented at hospital level could improve pain management and overall pain relief. Design.To assess the effectiveness of the program, we performed a before-after trial comparing patient's self-reported pain management and experience before and after program implementation. We included all adult patients hospitalized for more than 24 hours and discharged either to their home or to a nursing facility, between March 1, 2001 and March 31, 2001 (before program implementation) and between September 15, 2005 and October 15, 2005 (after program implementation). Setting.A teaching hospital of 2,096 beds in Geneva, Switzerland. Patients.All adult patients hospitalized for more than 24 hours and discharged between 1 to 31 March 2001 (before program) and 15 September to 15 October 2005 (after program implementation). Interventions.Implementation of a collaborative quality improvement program using multifaceted interventions (staff education, opinion leaders, patient education, audit, and feedback) to improve pain management at hospital level. Outcome Measures.Patient-reported pain experience, pain management, and overall hospital experience based on the Picker Patient Experience questionnaire, perceived health (SF-36 Health survey). Results.After implementation of the program only 2.3% of the patients reported having no pain relief during their hospital stay (vs 4.5% in 2001, P = 0.05). Among nonsurgical patients, improvements were observed for pain assessment (42.3% vs 27.9% of the patients had pain intensity measured with a visual analog scale, P = 0.012), pain management (staff did everything they could to help in 78.9% vs 67.9% of cases P = 0.003), and pain relief (70.4% vs 57.3% of patients reported full pain relief P = 0.008). In surgical patients, pain assessment also improved (53.7.3% vs 37.6%) as well as pain treatment. More patients received treatments to relieve pain regularly or intermittently after program implementation (95.1% vs 91.9% P = 0.046). Conclusion.Implementation of a collaborative quality improvement program at hospital level improved both pain management and pain relief in patients. Further studies are needed to determine the overall cost-effectiveness of such programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la actualidad las tecnologías de la información son utilizadas en todos los ámbitos empresariales. Desde sistemas de gestión (ERPs) pasando por la gestión documental, el análisis de información con sistema de Bussines Intelligence, pudiendo incluso convertirse en toda una nueva plataforma para proveer a las empresas de nuevos canales de venta, como es el caso deInternet.De la necesidad inicial de nuestro cliente en comenzar a expandirse por un nuevo canal de venta para poder llegar a nuevos mercados y diversificar sus clientes se inicia la motivación de este TFC.Dadas las características actuales de las tecnologías de la información e internet, estas conforman un binomio perfecto para definir este TFC que trata todos los aspectos necesarios para llegar a obtener un producto final como es un portal web inmobiliario adaptado a los requisitos demandados por los usuarios actuales de Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of our study was to identify and document some key cognitive aptitudes used by ambulance people in emergency situations. Better knowing such aptitudes is necessary for a school of ambulance people in order to improve the selection and education of students. The idea was to better consider real work activity requirements and characteristics, and to develop and implement genuine educational content and selection tools. We followed the work activity of ambulance professionals involved in real emergency situations. Some interventions were filmed and post-analyzed. We completed and validated our analysis by means of interviews with ambulance personnel. We selected some video sequences and used them as a support for the interviews. We identified and documented many different key aptitudes like orientation and spatial sense, the capacity to perform complex cognitive tasks and delicate manipulations in the context of divided attention, as well as diverse aptitudes relevant in collaborative work.