956 resultados para Cold shock protein
Resumo:
Growth of a glutamate transport-deficient mutant of Rhodobacter sphaeroides on glutamate as sole carbon and nitrogen source can be restored by the addition of millimolar amounts of Na+. Uptake of glutamate (Kt of 0.2 μM) by the mutant strictly requires Na+ (Km of 25 mM) and is inhibited by ionophores that collapse the proton motive force (pmf). The activity is osmotic-shock-sensitive and can be restored in spheroplasts by the addition of osmotic shock fluid. Transport of glutamate is also observed in membrane vesicles when Na+, a proton motive force, and purified glutamate binding protein are present. Both transport and binding is highly specific for glutamate. The Na+-dependent glutamate transporter of Rb. sphaeroides is an example of a secondary transport system that requires a periplasmic binding protein and may define a new family of bacterial transport proteins.
Resumo:
Mice immunized with heat shock proteins (hsps) isolated from mouse tumor cells (donor cells) produce CD8 cytotoxic T lymphocytes (CTL) that recognize donor cell peptides in association with the major histocompatibility complex (MHC) class I proteins of the responding mouse. The CTL are induced apparently because peptides noncovalently associated with the isolated hsp molecules can enter the MHC class I antigen processing pathway of professional antigen-presenting cells. Using a recombinant heat shock fusion protein with a large fragment of ovalbumin covalently linked to mycobacterial hsp70, we show here that when the soluble fusion protein was injected without adjuvant into H-2b mice, CTL were produced that recognized an ovalbumin-derived peptide, SIINFEKL, in association with Kb. The peptide is known to arise from natural processing of ovalbumin in H-2b mouse cells, and CTL from the ovalbumin-hsp70-immunized mice and a highly effective CTL clone (4G3) raised against ovalbumin-expressing EL4 tumor cells (EG7-OVA) were equally effective in terms of the concentration of SIINFEKL required for half-maximal lysis in a CTL assay. The mice were also protected against lethal challenge with ovalbumin-expressing melanoma tumor cells. Because large protein fragments or whole proteins serving as fusion partners can be cleaved into short peptides in the MHC class I processing pathway, hsp fusion proteins of the type described here are promising candidates for vaccines aimed at eliciting CD8 CTL in populations of MHC-disparate individuals.
Resumo:
SecA, the translocation ATPase in Escherichia coli, undergoes cycles of conformational changes (insertion/deinsertion) in response to ATP and a preprotein. The membrane-embedded portion of protein translocase, SecYEG, has crucial roles in the SecA-driven preprotein translocation reaction. We previously identified a secY mutation (secY205) that did not allow an ATP- and preprotein-dependent (productive) insertion of SecA as well as secA mutations that suppressed the secY205 translocation defect. One of the suppressor mutations, secA36, also suppressed the cold-sensitive phenotype of the secG deletion mutant. In vitro experiments at 20°C showed that inverted membrane vesicles lacking SecG were almost inactive in combination with the wild-type SecA protein in translocation of proOmpA as well as in the accompanying ATP hydrolysis. In contrast, the SecA36 mutant protein was found to be able to execute the translocation activity fully at this temperature, even in the absence of SecG. A SecG requirement and its alleviation by the SecA36 alteration also were shown for the SecA insertion reaction. The finding that the SecA36 protein no longer requires assistance from SecG in its insertion and in its catalysis of protein translocation agrees with the idea that SecG normally assists in the functioning of SecA. In agreement with this notion, when the intrinsic SecA function was compromised by a lowered ATP concentration, SecG became essential even at 37°C and even for the SecA36 protein. We propose that in the normal translocase, SecG cooperates with SecA to facilitate efficient movement of preprotein in each catalytic cycle of SecA.
Resumo:
The small heat shock proteins (sHSPs) are ubiquitous stress proteins proposed to act as molecular chaperones to prevent irreversible protein denaturation. We characterized the chaperone activity of Synechocystis HSP17 and found that it has not only protein-protective activity, but also a previously unrecognized ability to stabilize lipid membranes. Like other sHSPs, recombinant Synechocystis HSP17 formed stable complexes with denatured malate dehydrogenase and served as a reservoir for the unfolded substrate, transferring it to the DnaK/DnaJ/GrpE and GroEL/ES chaperone network for subsequent refolding. Large unilamellar vesicles made of synthetic and cyanobacterial lipids were found to modulate this refolding process. Investigation of HSP17-lipid interactions revealed a preference for the liquid crystalline phase and resulted in an elevated physical order in model lipid membranes. Direct evidence for the participation of HSP17 in the control of thylakoid membrane physical state in vivo was gained by examining an hsp17− deletion mutant compared with the isogenic wild-type hsp17+ revertant Synechocystis cells. We suggest that, together with GroEL, HSP17 behaves as an amphitropic protein and plays a dual role. Depending on its membrane or cytosolic location, it may function as a “membrane stabilizing factor” as well as a member of a multichaperone protein-folding network. Membrane association of sHSPs could antagonize the heat-induced hyperfluidization of specific membrane domains and thereby serve to preserve structural and functional integrity of biomembranes.
Resumo:
In Arabidopsis seedlings and cauliflower florets, Rpn6 (a proteasome non-ATPase regulatory subunit) was found in two distinct protein complexes of ∼800 and 500 kDa, respectively. The large complex likely represents the proteasome 19S regulator particle (RP) because it displays the expected subunit composition and all characteristics. The small complex, designated PR500, shares at least three subunits with the “lid” subcomplex of 19S RP and is loosely associated with an hsp70 protein. In Arabidopsis COP9 signalosome mutants, PR500 was specifically absent or reduced to an extent that correlates with the severity of the mutations. Furthermore, PR500 was also diminished in response to potential protein-misfolding stresses caused by the heat shock and canavanine treatment. Immunofluorescence studies suggest that PR500 has a distinct localization pattern and is enriched in specific nuclear foci. We propose that PR500 may be evolved in higher plants to cope with the frequently encountered environmental stresses.
Resumo:
Translational control has recently been recognized as an important facet of adaptive responses to various stress conditions. We describe the adaptation response of the yeast Saccharomyces cerevisiae to the loss of one of two mechanisms to target proteins to the secretory pathway. Using inducible mutants that block the signal recognition particle (SRP) pathway, we find that cells demonstrate a physiological response to the loss of the SRP pathway that includes specific changes in global gene expression. Upon inducing the loss of the SRP pathway, SRP-dependent protein translocation is initially blocked, and cell growth is considerably slowed. Concomitantly, gene expression changes include the induction of heat shock genes and the repression of protein synthesis genes. Remarkably, within hours, the efficiency of protein sorting improves while cell growth remains slow in agreement with the persistent repression of protein synthesis genes. Our results suggest that heat shock gene induction serves to protect cells from mislocalized precursor proteins in the cytosol, whereas reduced protein synthesis helps to regain efficiency in protein sorting by reducing the load on the protein translocation apparatus. Thus, we suggest that cells trade speed in cell growth for fidelity in protein sorting to adjust to life without SRP.
Resumo:
Plant chloroplasts originated from an endosymbiotic event by which an ancestor of contemporary cyanobacteria was engulfed by an early eukaryotic cell and then transformed into an organelle. Oxygenic photosynthesis is the specific feature of cyanobacteria and chloroplasts, and the photosynthetic machinery resides in an internal membrane system, the thylakoids. The origin and genesis of thylakoid membranes, which are essential for oxygenic photosynthesis, are still an enigma. Vipp1 (vesicle-inducing protein in plastids 1) is a protein located in both the inner envelope and the thylakoids of Pisum sativum and Arabidopsis thaliana. In Arabidopsis disruption of the VIPP1 gene severely affects the plant's ability to form properly structured thylakoids and as a consequence to carry out photosynthesis. In contrast, Vipp1 in Synechocystis appears to be located exclusively in the plasma membrane. Yet, as in higher plants, disruption of the VIPP1 gene locus leads to the complete loss of thylakoid formation. So far VIPP1 genes are found only in organisms carrying out oxygenic photosynthesis. They share sequence homology with a subunit encoded by the bacterial phage shock operon (PspA) but differ from PspA by a C-terminal extension of about 30 amino acids. In two cyanobacteria, Synechocystis and Anabaena, both a VIPP1 and a pspA gene are present, and phylogenetic analysis indicates that VIPP1 originated from a gene duplication of the latter and thereafter acquired its new function. It also appears that the C-terminal extension that discriminates VIPP1 proteins from PspA is important for its function in thylakoid formation.
Resumo:
The Arabidopsis CBF transcriptional activators bind to the CRT/DRE regulatory element present in the promoters of many cold-regulated genes and stimulate their transcription. Expression of the CBF1 proteins in yeast activates reporter genes carrying a minimal promoter with the CRT/DRE as an upstream regulatory element. Here we report that this ability of CBF1 is dependent upon the activities of three key components of the yeast Ada and SAGA complexes, namely the histone acetyltransferase (HAT) Gcn5 and the transcriptional adaptor proteins Ada2 and Ada3. This result suggested that CBF1 might function through the action of similar complexes in Arabidopsis. In support of this hypothesis we found that Arabidopsis has a homolog of the GCN5 gene and two homologs of ADA2, the first report of multiple ADA2 genes in an organism. The Arabidopsis GCN5 protein has intrinsic HAT activity and can physically interact in vitro with both the Arabidopsis ADA2a and ADA2b proteins. In addition, the CBF1 transcriptional activator can interact with the Arabidopsis GCN5 and ADA2 proteins. We conclude that Arabidopsis encodes HAT-containing adaptor complexes that are related to the Ada and SAGA complexes of yeast and propose that the CBF1 transcriptional activator functions through the action of one or more of these complexes.
Resumo:
The yeast heat shock transcription factor (HSF) belongs to the winged helix family of proteins. HSF binds DNA as a trimer, and additional trimers can bind DNA co-operatively. Unlike other winged helix–turn–helix proteins, HSF’s wing does not appear to contact DNA, as based on a previously solved crystal structure. Instead, the structure implies that the wing is involved in protein–protein interactions, possibly within a trimer or between adjacent trimers. To understand the function of the wing in the HSF DNA-binding domain, a Saccharomyces cerevisiae strain was created that expresses a wingless HSF protein. This strain grows normally at 30°C, but shows a decrease in reporter gene expression during constitutive and heat-shocked conditions. Removal of the wing does not affect the stability or trimeric nature of a protein fragment containing the DNA-binding and trimerization domains. Removal of the wing does result in a decrease in DNA-binding affinity. This defect was mainly observed in the ability to form the first trimer-bound complex, as the formation of larger complexes is unaffected by the deletion. Our results suggest that the wing is not involved in the highly co-operative nature of HSF binding, but may be important in stabilizing the first trimer bound to DNA.
Resumo:
We report the expression of the barley (Hordeum vulgare L.) COR (cold-regulated) gene cor14b (formerly pt59) and the accumulation of its chloroplast-localized protein product. A polyclonal antibody raised against the cor14b-encoded protein detected two chloroplast COR proteins: COR14a and COR14b. N-terminal sequencing of COR14a and expression of cor14b in Arabidopsis plants showed that COR14a is not encoded by the cor14b sequence, but it shared homology with the wheat (Triticum aestivum L.) WCS19 COR protein. The expression of cor14b was strongly impaired in the barley albino mutant an, suggesting the involvement of a plastidial factor in the control of gene expression. Low-level accumulation of COR14b was induced by cold treatment in etiolated plants, although cor14b expression and protein accumulation were enhanced after a short light pulse. Light quality was a determining factor in regulating gene expression: red or blue but not far-red or green light pulses were able to promote COR14b accumulation in etiolated plants, suggesting that phytochrome and blue light photoreceptors may be involved in the control of cor14b gene expression. Maximum accumulation of COR14b was reached only when plants were grown and/or hardened under the standard photoperiod. The effect of light on the COR14b stability was demonstrated by using transgenic Arabidopsis. These plants constitutively expressed cor14b mRNAs regardless of temperature and light conditions; nevertheless, green plants accumulated about twice as much COR14b protein as etiolated plants.
Resumo:
Rck2, a yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, requires phosphorylation for activation. We provide evidence that in budding yeast, this step can be executed by the osmostress-activated mitogen-activated protein kinase Hog1. Rck2 phosphorylation was transiently increased during osmostress or in mutants with a hyperactive high osmolarity glycerol (HOG) pathway. This modification depended on catalytically active Hog1 kinase and two putative mitogen-activated protein kinase phosphorylation sites in Rck2. Immunokinase assays showed that Hog1 can directly phosphorylate Rck2 to stimulate its enzymatic activity toward translation elongation factor 2. We demonstrate that Hog1 and Rck2 are necessary for attenuation of protein synthesis in response to osmotic challenge and show that modification of elongation factor 2 induced by osmostress depends on Rck2 and Hog1 in vivo. Therefore, we propose that the transient down-regulation of protein synthesis after osmotic shock is a response not to damage but to an extracellular signal mediated by Hog1 and Rck2.
Resumo:
Tissues expressing mRNAs of three cold-induced genes, blt101, blt14, and blt4.9, and a control gene, elongation factor 1α, were identified in the crown and immature leaves of cultivated barley (Hordeum vulgare L. cv Igri). Hardiness and tissue damage were assessed. blt101 and blt4.9 mRNAs were not detected in control plants; blt14 was expressed in control plants but only in the inner layers of the crown cortex. blt101 was expressed in many tissues of cold-acclimated plants but most strongly in the vascular-transition zone of the crown; blt14 was expressed only in the inner layers of the cortex and in cell layers partly surrounding vascular bundles in the vascular-transition zone; expression of blt4.9, which codes for a nonspecific lipid-transfer protein, was confined to the epidermis of the leaf and to the epidermis of the older parts of the crown. None of the cold-induced genes was expressed in the tunica, although the control gene was most strongly expressed there. Thus, the molecular aspects of acclimation differed markedly between tissues. Damage in the vascular-transition zone of the crown correlated closely with plant survival. Therefore, the strong expression of blt101 and blt14 in this zone may indicate a direct role in freezing tolerance of the crown.
Resumo:
We previously reported that short exposure of tomato (Lycopersicon esculentum L.) fruits to high temperature protects them from chilling injury. To study the involvement of heat-shock proteins (HSPs) in the acquisition of low-temperature tolerance, we cloned two heat-shock-induced genes that are also expressed at low temperatures. The cloned cDNAs belong to the small HSP group. Sequence analyses of the clones showed perfect homology to the tomato-ripening gene tom66 and to the tomato chloroplastic HSP21 gene tom111. The expression of both genes was induced by high temperature in fruits, flowers, leaves, and stems, but not by low or ambient temperatures or by other stresses such as drought and anaerobic conditions. When the heated fruits were transferred to low temperature, tom66 and tom111 mRNA levels first decreased but were then reinduced. Induction was not observed in nonheated fruits at low temperature. Immunodetection of tom111-encoded protein indicated that this protein is present at low temperatures in the heated fruits. The results of this study show that the expression of tom66 and tom111 is correlated with protection against some, but not all, symptoms of chilling injury.
Resumo:
Hypertonic shock of Saccharomyces cerevisiae activates the Hog1p MAP kinase cascade. In contrast, protein kinase C (Pkc1p) and the “cell integrity” MAP kinase cascade are critical for the response to hypotonic shock. We observed that hypertonic shock transiently relocated many, but not all, nuclear and nucleolar proteins to the cytoplasm. We hypothesized that the relocation of nuclear proteins was due to activation of the Hog1p kinase cascade, yet, surprisingly, Hog1p was not required for these effects. In contrast, Pkc1p kinase activity was required, although the Pkc1p MAP kinase cascade and several factors known to lie upstream and downstream of Pkc1p were not. Moreover, sudden induction of a hyperactive form of Pkc1p was sufficient to relocate nuclear proteins. Taken together, these observations show that the scope of involvement of Pkc1p in the organization of the nucleus considerably exceeds what has been characterized previously. The relocation of nuclear proteins is likely to account for the profound inhibition of RNA synthesis that was observed during hypertonic shock.
Resumo:
Detailed characterization of denatured states of proteins is necessary to understand the interactions that funnel the large number of possible conformations along fast routes for folding. Nuclear magnetic resonance experiments based on the nuclear Overhauser effect (NOE) detect hydrogen atoms close in space and provide information about local structure. Here we present an NMR procedure that detects almost all sequential NOEs between amide hydrogen atoms (HN-HN NOE), including those in random coil regions in a protein, barnase, in urea solutions. A semi-quantitative analysis of these HN-HN NOEs identified partly structured regions that are in remarkable agreement with those found to form early on the reaction pathway. Our results strongly suggest that the folding of barnase initiates at the first helix and the beta-turn between the third and the fourth strands. This strategy of defining residual structure has also worked for cold-denatured barstar and guanidinium hydrochloride-denatured chymotrypsin inhibitor 2 and so should be generally applicable.