994 resultados para Co-suppression
Resumo:
A solid state e.m.f. cell with yttria-doped thoria as the electrolyte and a mixture of Cr + Cr sub 2 O sub 3 as the reference electrode, was employed for the measurement of the activity of manganese in the Co--Mn system at 1760 deg K, for 0.3 > X sub Mn > 0.05. The liquid alloy was contained in an alumina crucible and saturated with MnAl sub 2+2x O sub 4+3x . The cell can be represented by Pt, W, (Co--Mn) + MnAl sub 2+2x O sub 4+3x + Al sub 2 O sub 3 /ThO sub 2 --Y sub 2 O sub 3 /Cr + Cr sub 2 O sub 3 , Pt. The activity of manganese shows negative deviations from Raoult's law. The activities in the Co--Mn system are intermediate between those in the Fe--Mn and Ni--Mn systems. The Gibbs' energies of mixing in these systems follow the trends given by Miedema's model. 14 ref.--AA.
Resumo:
Ternary phase relations in the Co-Cr-S system at 1223 K were determined using microprobe analysis of quenched samples. The results are consistent with the data available on the binary systems. A complete solid solution exists between cobalt monosulfide and chromium monosulfide. The CoCr2S4 thiospinel is the only ternary compound formed. A sulfur potential diagram was constructed for the region involving equilibrium between alloy and monosulfide based on thermodynamic data on the Co-Cr, Co-S, and Cr-S binary systems and the ternary information obtained in this study. The sulfidation behavior of Co-Cr alloys reported in the literature is discussed in light of the sulfur potential diagram.
Resumo:
The thermodynamic properties of liquid unsaturated Co--O solutions have been determined by electrochemical measurements using (Y sub 2 O sub 3 )ThO sub 2 as solid electrolyte. The cell can be represented as, Pt. MoO sub 2 + Mo | (Y sub 2 O sub 3 )ThO sub 2 | O sub Co , tungsten, Pt, Emf of the cell was measured as a function of oxygen concentration in liquid Co at 1798, 1873 and 1973K. Least-mean squares regression analysis of the experimental data gives for the free energy of solution of diatomic oxygen in liquid Co Delta G exp 0 sub O(Co) = --84935--7.61 T ( plus/minus 400) J/g-atom and self interaction parameter for oxygen epsilon exp O sub O = --97240/T + 40.52 ( plus/minus 1) where the standard state for O is an infinitely dilute solution in which the activity is equal to atomic percent. The present data are discussed in comparison with those reported in the literature and the phase diagram for the Co--O system. 18 ref.--AA.
Resumo:
The tie-lines delineating equilibria between CoO-NiO and Co-Ni solid solutions in the ternary Co-Ni-O system at 1373 K have been determined by electron microprobe andedax point count analysis of the oxide phase equilibrated with the alloy. The oxygen potentials corresponding to the tie-line compositions have been measured using a solid oxide galvanic cell with calcia-stabilized zirconia electrolyte and Ni + NiO reference electrode. Activities in the metallic and oxide solid solution have been derived using a new Gibbs-Duhem integration technique. Both phases exhibit small positive deviations from ideality; the values ofG E/X 1 X 2 are 2640 J mol−1 for the metallic phase and 2870 J mol−1 for the oxide solid solution.
Resumo:
A modified solution combustion technique was successfully used to synthesize sub-10 nm crystallites of hybrid CeO(2)-Al(2)O(3)-CeAlO(3). The fuel in the solution combustion was tuned to obtain mixed oxides and solid solutions of the compound. The compounds were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. XRD and TEM analysis showed the substitution of Al(3+) ions in the CeO(2) matrix when a combination of glycine, urea, hexamine and oxalyl dihydrazide was used as fuel for the synthesis. The compounds showed high activity for CO oxidation and the activity of the compounds was dependent upon the composition of the oxide.
Resumo:
The tie-lines delineating equilibria between CoF2-NiF2 and Co-Ni solid solutions in the ternary Co-Ni-F system at 1373 K have been determined by electron microprobe and EDAX point count analysis of the equilibrated phases. Activities in the fluoride solid solution have been derived from the knowledge of activitycomposition relation in the metallic solid solution and tie-line data,using a modified form of the Gibbs-Duhem integration. The fluorine potentials corresponding to the tie-line compositions have been calculated.The excess Gibbs' energy of mixing for the fluoride solid solution derived from the present data can be represented by the expression
Resumo:
Dense (Ba1―xLax)2In2O5+x (BLIO) electrolytes with different compositions (x = 0.4, 0.5, 0.6) were fabricated using powders obtained by the Pechini method. The formation of BLIO powders was investigated by using X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The calcination temperature and time were optimized. The sintered (Ba1―xLax)2In2O5+x electrolytes showed a relative density greater than ∼97%, and the major phase of three electrolyte compositions was indexed as a cubic perovskite. The electrical conductivity of BLIO ceramics at elevated temperatures in air was measured by ac-impedance spectroscopy. The activation energies for conduction in BLIO were 102 kJ mol―1 between 473 and 666 K and 118 kJ mol―1 between 769 and 873 K, which are comparable to that for 8 mol % yttria-stabilized cubic zirconia. Mixed-potential gas sensors utilizing BLIO-based electrolytes exhibited good sensitivity to different CO concentrations from ∼100 to ∼500 ppm and excellent selectivity to methane at around 873 K.
Resumo:
The compositional evolution in sputter deposited LiCoO2 thin films is influenced by process parameters involved during deposition. The electrochemical performance of these films strongly depends on their microstructure, preferential orientation and stoichiometry. The transport process of sputtered Li and Co atoms from the LiCoO2 target to the substrate, through Ar plasma in a planar magnetron configuration, was investigated based on the Monte Carlo technique. The effect of sputtering gas pressure and the substrate-target distance (dst) on Li/Co ratio, as well as, energy and angular distribution of sputtered atoms on the substrate were examined. Stable Li/Co ratios have been obtained at 5 Pa pressure and dst in the range 5−11 cm. The kinetic energy and incident angular distribution of Li and Co atoms reaching the substrate have been found to be dependent on sputtering pressure. Simulations were extended to predict compositional variations in films prepared at various process conditions. These results were compared with the composition of films determined experimentally using x-ray photoelectron spectroscopy (XPS). Li/Co ratio calculated using XPS was in moderate agreement with that of the simulated value. The measured film thickness followed the same trend as predicted by simulation. These studies are shown to be useful in understanding the complexities in multicomponent sputtering.
Resumo:
Upper bounds on the probability of error due to co-channel interference are proposed in this correspondence. The bounds are easy to compute and can be fairly tight.
Resumo:
An extension of Rizk's analysis to cover any type of switching is presented for calculating the residual current and recovery voltage in a singlephase switched transmission system. Equations for the determination of the current and voltage are shown, and the method has been used for the analysis of a series- and shunt-compensated line.Three possible switching methods for the effective control of the recovery voltage and residual current are discussed: normal switching, switching at the ends of the line and switching of the series capacitors.
Resumo:
Phenylboronic acids can exist, in principle, in three different conformers (syn,syn; syn,anti and anti,anti) with distinct energy profiles. In their native state, these compounds prefer the energetically favored syn, anti-conformation. In molecular complexes, however, the functionality exhibits conformational diversity. In this paper we report a series of co-crystals, with N-donor compounds, prepared by a design strategy involving the synthons based on the syn, syn-conformation of the boronic acid functionality. For this purpose, we employed compounds with the 1,2-diazo fragment (alprazolam, 1H-tetrazole, acetazolamide and benzotriazole), 1,10-phenanthroline and 2,2'-bipyridine for the co-crystallization experiments. However, our study shows that the mere presence of the 1,2-diazo fragment in the coformer does not guarantee the successful formation of co-crystals with a syn, syn-conformation of the boronic acid. [GRAPHICS] The -B(OH)(2) fragment makes unsymmetrical O-H center dot center dot center dot N heterosynthons with alprazolam (ALP) and 1,10-phenanthroline (PHEN). In the co-crystals of phenylboronic acids with 1H-tetrazole (TETR) and 2,2'-bipyridine (BPY), the symmetrical boronic acid dimer is the major synthon. In the BPY complex, boronic acid forms linear chains and the pyridine compound interacts with the lateral OH of boronic acid dimers that acts as a connector, thus forming a ladder structure. In the TETR complex, each heterocycle interacts with three boronic acids. While two boronic acids interact using the phenolic group, the third molecule generates O-H center dot center dot center dot N hydrogen bonds using the extra OH group, of -B(OH)(2) fragment, left after the dimer formation. Thus, although molecules were selected retrosynthetically with the 1,2-diazo fragment or with nearby hetero-atoms to induce co-crystal formation using the syn,syn-orientation of the -B(OH)(2) functionality, co-crystal formation is in fact selective and is probably driven by energy factors. Acetazolamide (ACET) contains self-complementary functional groups and hence creates stable homosynthons. Phenylboronic acids being weak competitors fail to perturb the homosynthons and hence the components crystallize separately. Therefore, besides the availability of possible hydrogen bond acceptors in the required position and orientation, the ability of the phenyl-boronic acid to perturb the existing interactions is also a prerequisite to form co-crystals. This is illustrated in the table below. In the case of ALP, PHEN and BPY, the native structures are stabilized by weak interactions and may be influenced by the boronic acid fragment. Thus phenylboronic acids can attain co-crystals with those compounds, wherein the cyclic O-H center dot center dot center dot N hydrogen bonds are stronger than the individual homo-interactions. This can lower the lattice energy of the molecular complex as compared with the individual crystals. [GRAPHICS] Phenylboronic acids show some selectivity in the formation of co-crystals with N-heterocycles. The differences in solubility of the components fall short to provide a possible reason for the selective formation of co-crystals only with certain compounds. These compounds, being weak acids, do not follow the Delta pK(a) analysis and hence fail to provide any conclusive observation. Theoretical results show that of the three conformers possible, the syn,anti conformer is the most stable. The relative stabilities of the three conformers syn,anti,syn,syn and anti,anti are 0.0, 2.18 and 3.14 kcal/mol, respectively. The theoretical calculations corroborate the fact that only energetically favorable synthons can induce the formation of heterosynthons, as in ALP and PHEN complexes. From a theoretical and structural analysis it is seen that phenylboronic acids will form interactions with those molecules wherein the heterocyclic and acidic fragments can interrupt the homosynthons. However, the energy profile is shallow and can be perturbed easily by the presence of competing functional groups (such as OH and COOH) in the vicinity. [GRAPHICS] .
Resumo:
Base metal substituted Sn(0.95)M(0.05)O(2-delta) (M = Cu, Fe, Mn, Co) catalysts were synthesized by the solution combustion method and characterized by XRD, XPS, TEM and BET surface area analysis. The catalytic activities of these materials were investigated by performing CO oxidation. The rates and the apparent activation energies of the reaction for CO oxidation were determined for each catalyst. All the substituted catalysts showed high rates and lower activation energies for the oxidation of CO as compared to unsubstituted SnO(2). The rate was found to be much higher over copper substituted SnO(2) as compared to other studied catalysts. 100% CO conversion was obtained below 225 degrees C over this catalyst. A bifunctional reaction mechanism was developed that accounts for CO adsorption on base metal and support ions and O(2) dissociation on the oxide ion vacancy. The kinetic parameters were determined by fitting the model to the experimental data. The high rates of the CO oxidation reactions at low temperatures were rationalized by the high dissociative chemisorption of adsorbed O(2) over these catalysts.
Resumo:
Increasing concentrations of atmospheric carbon dioxide (CO(2)) influence climate by suppressing canopy transpiration in addition to its well- known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO(2) concentrations using the National Center for Atmospheric Research's (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO(2) levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO(2) levels implies that incremental warming associated with the physiological effect of CO(2) will not abate at higher CO(2) concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO(2) emissions.
Resumo:
The crystal polymorphism of the anthelmintic drug, triclabendazole (TCB), is described. Two anhydrates (Forms I and II), three solvates, and an amorphous form have been previously mentioned. This study reports the crystal structures of Forms I (1) and II (2). These structures illustrate the uncommon phenomenon of tautomeric polymorphism. TCB exists as two tautomers A and B. Form I (Z'=2) is composed of two molecules of tautomer A while Form II (Z'=1) contains a 1:1 mixture of A and B. The polymorphs are also characterized by using other solid-state techniques (differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), PXRD, FT-IR, and NMR spectroscopy). Form I is the higher melting form (m.p.: 177 degrees C, Delta Hf=approximate to 105 +/- 4 Jg-1) and is the more stable form at room temperature. Form II is the lower melting polymorph (m.p.: 166 degrees C, Delta Hf=approximate to 86 +/- 3 Jg-1) and shows high kinetic stability on storage in comparison to the amorphous form but it transforms readily into Form I in a solution-mediated process. Crystal structure analysis of co-crystals 3-11 further confirms the existence of tautomeric polymorphism in TCB. In 3 and 11, tautomer A is present whereas in 4-10 the TCB molecule exists wholly as tautomer B. The DFT calculations suggest that the optimized tautomers A and B have nearly the same energies. Single point energy calculations reveal that tautomer A (in Form I) exists in two low-energy conformations, whereas in Form II both tautomers A and B exist in an unfavorable high-energy conformation, stabilized by a five-point dimer synthon. The structural and thermodynamic features of 1-11 are discussed in detail. Triclabendazole is an intriguing case in which tautomeric and conformational variations co-exist in the polymorphs.
Resumo:
We present numerical studies of a model for CO oxidation on the surface of Pt(110) proposed in Ref. 1. The model shows several interesting regimes, some of which exhibit spatiotemporal chaos. The time series of the CO concentration at a given point consists of a sequence of pulses. We concentrate on interpulse intervals theta and show that their distribution P(theta) approaches a delta function continuously as the system goes from a state M, with meandering spirals, to a state S, with spatially frozen spiral cores. This should be verifiable experimentally.