879 resultados para Climatic conditions
Resumo:
In den letzten drei Jahrzehnten sind Fernerkundung und GIS in den Geowissenschaften zunehmend wichtiger geworden, um die konventionellen Methoden von Datensammlung und zur Herstellung von Landkarten zu verbessern. Die vorliegende Arbeit befasst sich mit der Anwendung von Fernerkundung und geographischen Informationssystemen (GIS) für geomorphologische Untersuchungen. Durch die Kombination beider Techniken ist es vor allem möglich geworden, geomorphologische Formen im Überblick und dennoch detailliert zu erfassen. Als Grundlagen werden in dieser Arbeit topographische und geologische Karten, Satellitenbilder und Klimadaten benutzt. Die Arbeit besteht aus 6 Kapiteln. Das erste Kapitel gibt einen allgemeinen Überblick über den Untersuchungsraum. Dieser umfasst folgende morphologische Einheiten, klimatischen Verhältnisse, insbesondere die Ariditätsindizes der Küsten- und Gebirgslandschaft sowie das Siedlungsmuster beschrieben. Kapitel 2 befasst sich mit der regionalen Geologie und Stratigraphie des Untersuchungsraumes. Es wird versucht, die Hauptformationen mit Hilfe von ETM-Satellitenbildern zu identifizieren. Angewandt werden hierzu folgende Methoden: Colour Band Composite, Image Rationing und die sog. überwachte Klassifikation. Kapitel 3 enthält eine Beschreibung der strukturell bedingten Oberflächenformen, um die Wechselwirkung zwischen Tektonik und geomorphologischen Prozessen aufzuklären. Es geht es um die vielfältigen Methoden, zum Beispiel das sog. Image Processing, um die im Gebirgskörper vorhandenen Lineamente einwandfrei zu deuten. Spezielle Filtermethoden werden angewandt, um die wichtigsten Lineamente zu kartieren. Kapitel 4 stellt den Versuch dar, mit Hilfe von aufbereiteten SRTM-Satellitenbildern eine automatisierte Erfassung des Gewässernetzes. Es wird ausführlich diskutiert, inwieweit bei diesen Arbeitsschritten die Qualität kleinmaßstäbiger SRTM-Satellitenbilder mit großmaßstäbigen topographischen Karten vergleichbar ist. Weiterhin werden hydrologische Parameter über eine qualitative und quantitative Analyse des Abflussregimes einzelner Wadis erfasst. Der Ursprung von Entwässerungssystemen wird auf der Basis geomorphologischer und geologischer Befunde interpretiert. Kapitel 5 befasst sich mit der Abschätzung der Gefahr episodischer Wadifluten. Die Wahrscheinlichkeit ihres jährlichen Auftretens bzw. des Auftretens starker Fluten im Abstand mehrerer Jahre wird in einer historischen Betrachtung bis 1921 zurückverfolgt. Die Bedeutung von Regentiefs, die sich über dem Roten Meer entwickeln, und die für eine Abflussbildung in Frage kommen, wird mit Hilfe der IDW-Methode (Inverse Distance Weighted) untersucht. Betrachtet werden außerdem weitere, regenbringende Wetterlagen mit Hilfe von Meteosat Infrarotbildern. Genauer betrachtet wird die Periode 1990-1997, in der kräftige, Wadifluten auslösende Regenfälle auftraten. Flutereignisse und Fluthöhe werden anhand von hydrographischen Daten (Pegelmessungen) ermittelt. Auch die Landnutzung und Siedlungsstruktur im Einzugsgebiet eines Wadis wird berücksichtigt. In Kapitel 6 geht es um die unterschiedlichen Küstenformen auf der Westseite des Roten Meeres zum Beispiel die Erosionsformen, Aufbauformen, untergetauchte Formen. Im abschließenden Teil geht es um die Stratigraphie und zeitliche Zuordnung von submarinen Terrassen auf Korallenriffen sowie den Vergleich mit anderen solcher Terrassen an der ägyptischen Rotmeerküste westlich und östlich der Sinai-Halbinsel.
Resumo:
Tuta absoluta (Meyrick) è un lepidottero originario dell’America meridionale, infeudato a pomodoro e ad altre solanacee coltivate e spontanee. Con l’attività trofica le larve causano mine fogliari e gallerie nei frutti, con conseguenti ingenti danni alle colture. T. absoluta è stato segnalato per la prima volta in Italia nel 2008 e in Piemonte nel 2009. Pertanto le ricerche sono state condotte per rilevarne la distribuzione in Piemonte, studiarne l’andamento di popolazione in condizioni naturali e controllate, e valutare l’efficacia di differenti mezzi di lotta al fine di definire le strategie di difesa. Il monitoraggio, condotto nel 2010, ha evidenziato come T. absoluta sia ormai largamente diffuso sul territorio regionale già pochi mesi dopo la segnalazione. L’insetto ha mostrato di prediligere condizioni climatiche più miti; infatti è stato ritrovato con maggiore frequenza nelle aree più calde. Il fitofago ha raggiunto densità di popolazione elevate a partire dalla seconda metà dell’estate, a ulteriore dimostrazione che, in una regione a clima temperato come il Piemonte, T. absoluta dà origine a infestazioni economicamente rilevanti solo dopo il culmine della stagione estiva. Per definire le strategie di lotta, sono state condotte prove in laboratorio, semi-campo e campo volte a valutare la tossicità nei confronti del lepidottero di preparati a base di emamectina benzoato, rynaxypyr, spinosad e Bacillus thuringiensis Berliner. In campo è stata verificata anche l’efficacia del miride dicifino Macrolophus pygmaeus (Rambur), reperibile in commercio. In tutte le prove, è stata riscontrata una maggiore efficacia di rynaxypyr ed emamectina benzoato. In campo M. pygmaeus ha mostrato difficoltà d’insediamento ed è stato in grado di contenere efficacemente il fitofago soltanto con bassi livelli d’infestazione. Per contro è stata costantemente osservata la presenza naturale di un altro miride dicifino Dicyphus errans (Wolff), che in laboratorio ha mostrato di non essere particolarmente disturbato dalle sostanze saggiate.
Resumo:
Wine grape must deal with serious problems due to the unfavorable climatic conditions resulted from global warming. High temperatures result in oxidative damages to grape vines. The excessive elevated temperatures are critical for grapevine productivity and survival and contribute to degradation of grape and wine quality and yield. Elevated temperature can negatively affect anthocyanin accumulation in red grape. Particularly, cv. Sangiovese was identified to be very sensitive to such condition. The quantitative real-time PCR analysis showed that flavonoid biosynthetic genes were slightly repressed by high temperature. Also, the heat stress repressed the expression of the transcription factor “VvMYBA1” that activates the expression of UFGT. Moreover, high temperatures had repressing effects on the activity of the flavonoids biosynthetic enzymes “PAL” and “UFGT”.Anthocyanin accumulation in berry skin is due to the balance between its synthesis and oxidation. In grape cv. Sangiovese, the gene transcription and activity of peroxidases enzyme was elevated by heat stress as a defensive mechanism of ROS-scavenging. Among many isoforms of peroxidases genes, one gene (POD 1) was induced in Sangiovese under thermal stress condition. This gene was isolated and evaluated via the technique of genes transformation from grape to Petunia. Reduction in anthocyanins concentration and higher enzymatic activity of peroxidase was observed in POD 1 transformed Petunia after heat shock compared to untrasformed control. Moreover, in wine producing regions, it is inevitable for the grape growers to adopt some adaptive strategies to alleviate grape damages to abiotic stresses. Therefore, in this thesis, the technique of post veraison trimming was done to improve the coupling of phenolic and sugar ripening in Vitis vinifera L. cultivar Sangiovese. Trimming after veraison showed to be executable to slow down the rate of sugar accumulation in grape (to decrease the alcohol potential in wines) without evolution of the main berry flavonoids compounds.
Resumo:
In 2010, 2011 and 2012 growing seasons, the occurrence of the ascomycetes Podosphaera fusca and Golovinomyces orontii, causal agents of powdery mildew disease, was monitored on cultivated cucurbits located in Bologna and Mantua provinces to determine the epidemiology of the species. To identify the pathogens, both morphological and molecular identifications were performed on infected leaf samples and a Multiplex-PCR was performed to identify the mating type genes of P. fusca isolates. The investigations indicated a temporal succession of the two species with the earlier infections caused by G. orontii, that seems to be the predominant species till the middle of July when it progressively disappears and P. fusca becomes the main species infecting cucurbits till the end of October. The temporal variation is likely due to the different overwintering strategies of the two species instead of climatic conditions. Only chasmothecia of P. fusca were recorded and mating type alleles ratio tended to be 1:1. Considering that only chasmothecia of P. fusca were found, molecular-genetic analysis were carried out to find some evidence of recombination within this species by MLST and AFLP methods. Surprisingly, no variations were observed within isolates for the 8 MLST markers used. According to this result, AFLP analysis showed a high similarity within isolates, with SM similarity coefficient ranging between 0.91-1.00 and also, sequencing of 12 polymorphic bands revealed identity to some gene involved in mutation and selection. The results suggest that populations of P. fusca are likely to be a clonal population with some differences among isolates probably due to agricultural practices such as fungicides treatments and cultivated hosts. Therefore, asexual reproduction, producing a lot of fungal biomass that can be easily transported by wind, is the most common and useful way to the spread and colonization of the pathogen.
Resumo:
The atmosphere is a global influence on the movement of heat and humidity between the continents, and thus significantly affects climate variability. Information about atmospheric circulation are of major importance for the understanding of different climatic conditions. Dust deposits from maar lakes and dry maars from the Eifel Volcanic Field (Germany) are therefore used as proxy data for the reconstruction of past aeolian dynamics.rnrnIn this thesis past two sediment cores from the Eifel region are examined: the core SM3 from Lake Schalkenmehren and the core DE3 from the Dehner dry maar. Both cores contain the tephra of the Laacher See eruption, which is dated to 12,900 before present. Taken together the cores cover the last 60,000 years: SM3 the Holocene and DE3 the marine isotope stages MIS-3 and MIS-2, respectively. The frequencies of glacial dust storm events and their paleo wind direction are detected by high resolution grain size and provenance analysis of the lake sediments. Therefore two different methods are applied: geochemical measurements of the sediment using µXRF-scanning and the particle analysis method RADIUS (rapid particle analysis of digital images by ultra-high-resolution scanning of thin sections).rnIt is shown that single dust layers in the lake sediment are characterized by an increased content of aeolian transported carbonate particles. The limestone-bearing Eifel-North-South zone is the most likely source for the carbonate rich aeolian dust in the lake sediments of the Dehner dry maar. The dry maar is located on the western side of the Eifel-North-South zone. Thus, carbonate rich aeolian sediment is most likely to be transported towards the Dehner dry maar within easterly winds. A methodology is developed which limits the detection to the aeolian transported carbonate particles in the sediment, the RADIUS-carbonate module.rnrnIn summary, during the marine isotope stage MIS-3 the storm frequency and the east wind frequency are both increased in comparison to MIS-2. These results leads to the suggestion that atmospheric circulation was affected by more turbulent conditions during MIS-3 in comparison to the more stable atmospheric circulation during the full glacial conditions of MIS-2.rnThe results of the investigations of the dust records are finally evaluated in relation a study of atmospheric general circulation models for a comprehensive interpretation. Here, AGCM experiments (ECHAM3 and ECHAM4) with different prescribed SST patterns are used to develop a synoptic interpretation of long-persisting east wind conditions and of east wind storm events, which are suggested to lead to an enhanced accumulation of sediment being transported by easterly winds to the proxy site of the Dehner dry maar.rnrnThe basic observations made on the proxy record are also illustrated in the 10 m-wind vectors in the different model experiments under glacial conditions with different prescribed sea surface temperature patterns. Furthermore, the analysis of long-persisting east wind conditions in the AGCM data shows a stronger seasonality under glacial conditions: all the different experiments are characterized by an increase of the relative importance of the LEWIC during spring and summer. The different glacial experiments consistently show a shift from a long-lasting high over the Baltic Sea towards the NW, directly above the Scandinavian Ice Sheet, together with contemporary enhanced westerly circulation over the North Atlantic.rnrnThis thesis is a comprehensive analysis of atmospheric circulation patterns during the last glacial period. It has been possible to reconstruct important elements of the glacial paleo climate in Central Europe. While the proxy data from sediment cores lead to a binary signal of the wind direction changes (east versus west wind), a synoptic interpretation using atmospheric circulation models is successful. This shows a possible distribution of high and low pressure areas and thus the direction and strength of wind fields which have the capacity to transport dust. In conclusion, the combination of numerical models, to enhance understanding of processes in the climate system, with proxy data from the environmental record is the key to a comprehensive approach to paleo climatic reconstruction.rn
Resumo:
Mineral dust is an important component of the Earth's climate system and provides essential nutrientsrnto oceans and rain forests. During atmospheric transport, dust particles directly and indirectly influencernweather and climate. The strength of dust sources and characteristics of the transport, in turn, mightrnbe subject to climatic changes. Earth system models help for a better understanding of these complexrnmechanisms.rnrnThis thesis applies the global climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for simulationsrnof the mineral dust cycle under different climatic conditions. The prerequisite for suitable modelrnresults is the determination of the model setup reproducing the most realistic dust cycle in the recentrnclimate. Simulations with this setup are used to gain new insights into properties of the transatlanticrndust transport from Africa to the Americas and adaptations of the model's climate forcing factors allowrnfor investigations of the impact of climatic changes on the dust cycle.rnrnIn the first part, the most appropriate model setup is determined through a number of sensitivity experiments.rnIt uses the dust emission parametrisation from Tegen et al. 2002 and a spectral resolutionrnof T85, corresponding to a horizontal grid spacing of about 155 km. Coarser resolutions are not able tornaccurately reproduce emissions from important source regions such as the Bodele Depression in Chad orrnthe Taklamakan Desert in Central Asia. Furthermore, the representation of ageing and wet deposition ofrndust particles in the model requires a basic sulphur chemical mechanism. This setup is recommended forrnfuture simulations with EMAC focusing on mineral dust.rnrnOne major branch of the global dust cycle is the long-range transport from the world's largest dustrnsource, the Sahara, across the Atlantic Ocean. Seasonal variations of the main transport pathways to thernAmazon Basin in boreal winter and to the Caribbean during summer are well known and understood,rnand corroborated in this thesis. Both Eulerian and Lagrangian methods give estimates on the typicalrntransport times from the source regions to the deposition on the order of nine to ten days. Previously, arnhuge proportion of the dust transported across the Atlantic Ocean has been attributed to emissions fromrnthe Bodele Depression. However, the contribution of this hot spot to the total transport is very low inrnthe present results, although the overall emissions from this region are comparable. Both model resultsrnand data sets analysed earlier, such as satellite products, involve uncertainties and this controversy aboutrndust transport from the Bodele Depression calls for future investigations and clarification.rnrnAforementioned characteristics of the transatlantic dust transport just slightly change in simulationsrnrepresenting climatic conditions of the Little Ice Age in the middle of the last millennium with meanrnnear-surface cooling of 0.5 to 1 K. However, intensification of the West African summer monsoon duringrnthe Little Ice Age is associated with higher dust emissions from North African source regions and wetterrnconditions in the Sahel. Furthermore, the Indian Monsoon and dust emissions from the Arabian Peninsula,rnwhich are affected by this circulation, are intensified during the Little Ice Age, whereas the annual globalrndust budget is similar in both climate epochs. Simulated dust emission fluxes are particularly influencedrnby the surface parameters. Modifications of the model do not affect those in this thesis, to be able tornascribe all differences in the results to changed forcing factors, such as greenhouse gas concentrations.rnDue to meagre comparison data sets, the verification of results presented here is problematic. Deeperrnknowledge about the dust cycle during the Little Ice Age can be obtained by future simulations, based onrnthis work, and additionally using improved reconstructions of surface parameters. Better evaluation ofrnsuch simulations would be possible by refining the temporal resolution of reconstructed dust depositionrnfluxes from existing ice and marine sediment cores.
Resumo:
Eisbohrkerne stellen wertvolle Klimaarchive dar, da sie atmosphärisches Aerosol konservieren. Die Analyse chemischer Verbindungen als Bestandteil atmosphärischer Aerosole in Eisbohrkernen liefert wichtige Informationen über Umweltbedingungen und Klima der Vergangenheit. Zur Untersuchung der α-Dicarbonyle Glyoxal und Methylglyoxal in Eis- und Schneeproben wurde eine neue, sensitive Methode entwickelt, die die Stir Bar Sorptive Extraction (SBSE) mit der Hochleistungsflüssigchromatographie-Massenspektrometrie (HPLC-MS) kombiniert. Zur Analyse von Dicarbonsäuren in Eisbohrkernen wurde eine weitere Methode entwickelt, bei der die Festphasenextraktion mit starkem Anionenaustauscher zum Einsatz kommt. Die Methode erlaubt die Quantifizierung aliphatischer Dicarbonsäuren (≥ C6), einschließlich Pinsäure, sowie aromatischer Carbonsäuren (wie Phthalsäure und Vanillinsäure), wodurch die Bestimmung wichtiger Markerverbindungen für biogene und anthropogene Quellen ermöglicht wurde. Mit Hilfe der entwickelten Methoden wurde ein Eisbohrkern aus den Schweizer Alpen analysiert. Die ermittelten Konzentrationsverläufe der Analyten umfassen die Zeitspanne von 1942 bis 1993. Mittels einer Korrelations- und Hauptkomponentenanalyse konnte gezeigt werden, dass die organischen Verbindungen im Eis hauptsächlich durch Waldbrände und durch vom Menschen verursachte Schadstoffemissionen beeinflusst werden. Im Gegensatz dazu sind die Konzentrationsverläufe einiger Analyten auf den Mineralstaubtransport auf den Gletscher zurückzuführen. Zusätzlich wurde ein Screening der Eisbohrkernproben mittels ultrahochauflösender Massenspektrometrie durchgeführt. Zum ersten Mal wurden in diesem Rahmen auch Organosulfate und Nitrooxyorganosulfate in einem Eisbohrkern identifiziert.
Resumo:
Forest fires play a key role in the global carbon cycle and thus, can affect regional and global climate. Although fires in extended areas of Russian boreal forests have a considerable influence on atmospheric greenhouse gas and soot concentrations, estimates of their impact on climate are hampered by a lack of data on the history of forest fires. Especially regions with strong continental climate are of high importance due to an intensified development of wildfires. In this study we reconstruct the fire history of Southern Siberia during the past 750 years using ice-core based nitrate, potassium, and charcoal concentration records from Belukha glacier in the continental Siberian Altai. A period of exceptionally high forest-fire activity was observed between AD 1600 and 1680, following an extremely dry period AD 1540-1600. Ice-core pollen data suggest distinct forest diebacks and the expansion of steppe in response to dry climatic conditions. Coherence with a paleoenvironmental record from the 200 km distant Siberian lake Teletskoye shows that the vegetational shift AD 1540-1680, the increase in fire activity AD 1600-1680, and the subsequent recovery of forests AD 1700 were of regional significance. Dead biomass accumulation in response to drought and high temperatures around AD 1600 probably triggered maximum forest-fire activity AD 1600-1680. The extreme dry period in the 16th century was also observed at other sites in Central Asia and is possibly associated with a persistent positive mode of the Pacific Decadal Oscillation (PDO). No significant increase in biomass burning occurred in the Altai region during the last 300 years, despite strongly increasing temperatures and human activities. Our results imply that precipitation changes controlled fire-regime and vegetation shifts in the Altai region during the past 750 years. We conclude that high sensitivity of ecosystems to occasional decadal-scale drought events may trigger unprecedented environmental reorganizations under global-warming conditions.
Resumo:
Two main areas were examined in this project: * The detailed climatic history of the second part of the Holocene (approximately the last 5500 calendar years) for the Zapadnodvinskaya lowland, making it possible to reconstruct general climatic changes in eastern Europe (taking other palynological, dendrochronological, historical and instrumental data into account). * The most important historical events for the period of the 9th-17th centuries that had an impact on Russian history. The comparative chronology of the main climatic changes and events of Russian social history showed that as local climatic conditions became worse (i.e. falling average annual temperature or precipitation rate) the density of significant events in society rose. This suggests that climatic deterioration is both a stimulus and an outstanding factor in social development.
Resumo:
A 36 m long ice core down to bedrock from the Cerro Tapado glacier (5536 m a.s.l, 30°08' S, 69°55' W) was analyzed to reconstruct past climatic conditions for Northern Chile. Because of the marked seasonality in the precipitation (short wet winter and extended dry summer periods) in this region, major snow ablation and related post-depositional processes occur on the glacier surface during summer periods. They include predominantly sublimation and dry deposition. Assuming that, like measured during the field campaign, the enrichment of chloride was always related to sublimation, the chemical record along the ice core may be applied to reconstruct the history of such secondary processes linked to the past climatic conditions over northern Chile. For the time period 1962–1999, a mean annual net accumulation of 316 mm water equivalent (weq) and 327 mm weq loss by sublimation was deduced by this method. This corresponds to an initial total annual accumulation of 539 mm weq. The annual variability of the accumulation and sublimation is related with the Southern Oscillation Index (SOI): higher net-accumulation during El-Niño years and more sublimation during La Niña years. The deepest part of the ice record shows a time discontinuity; with an ice body deposited under different climatic conditions: 290 mm higher precipitation but with reduced seasonal distribution (+470 mm in winter and –180 mm in summer) and –3°C lower mean annual temperature. Unfortunately, its age is unknown. The comparison with regional proxy data however let us conclude that the glacier buildup did most likely occur after the dry mid-Holocene.
Resumo:
Gas is trapped in polar ice sheets at ~50–120 m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (Δage) in the past. However, such models need to be validated by data, in particular for periods colder than present day on the East Antarctic plateau. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC) site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML) ice core, both in the ice phase (using volcanic horizons) and in the gas phase (using rapid methane variations). We also use the structured 10Be peak, occurring 41 kyr before present (BP) and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the Δage during this event. Our results seem to reveal an overestimate of the Δage by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Although the exact reasons for the Δage overestimate at the two EPICA sites remain unknown at this stage, we conclude that current densification model simulations have deficits under glacial climatic conditions. Whatever the cause of the Δage overestimate, our finding suggests that the phase relationship between CO2 and EDC temperature previously inferred for the start of the last deglaciation (lag of CO2 by 800±600 yr) seems to be overestimated.
Resumo:
We found a significant positive correlation between local summer air temperature (May-September) and the annual sediment mass accumulation rate (MAR) in Lake Silvaplana (46°N, 9°E, 1800 m a.s.l.) during the twentieth century (r = 0.69, p < 0.001 for decadal smoothed series). Sediment trap data (2001-2005) confirm this relation with exceptionally high particle yields during the hottest summer of the last 140 years in 2003. On this base we developed a decadal-scale summer temperature reconstruction back to AD 1580. Surprisingly, the comparison of our reconstruction with two other independent regional summer temperature reconstructions (based on tree-rings and documentary data) revealed a significant negative correlation for the pre-1900 data (ie, late ‘Little Ice Age’). This demonstrates that the correlation between MAR and summer temperature is not stable in time and the actualistic principle does not apply in this case. We suggest that different climatic regimes (modern/‘Little Ice Age’) lead to changing state conditions in the catchment and thus to considerably different sediment transport mechanisms. Therefore, we calibrated our MAR data with gridded early instrumental temperature series from AD 1760-1880 (r = -0.48, p < 0.01 for decadal smoothed series) to properly reconstruct the late LIA climatic conditions. We found exceptionally low temperatures between AD 1580 and 1610 (0.75°C below twentieth-century mean) and during the late Maunder Minimum from AD 1680 to 1710 (0.5°C below twentieth-century mean). In general, summer temperatures did not experience major negative departures from the twentieth-century mean during the late ‘Little Ice Age’. This compares well with the two existing independent regional reconstructions suggesting that the LIA in the Alps was mainly a phenomenon of the cold season.
Resumo:
A glacier–climate model was used to calculate climatic conditions in a test site on the east Andean slope around Cochabamba (17°S, Bolivia) for the time of the maximum Late Pleistocene glaciation. Results suggest a massive temperature reduction of about − 6.4 °C (+ 1.4/− 1.3 °C), combined with annual precipitation rates of about 1100 mm (+ 570 mm/− 280 mm). This implies no major change in annual precipitation compared with today. Summer precipitation was the source for the humidity in the past, as is the case today. This climate scenario argues for a maximum advance of the paleo-glaciers in the eastern cordillera during the global Last Glacial Maximum (LGM, 20 ka BP), which is confirmed by exposure age dates. In a synthesized view over the central Andes, the results point to an increased summer precipitation-driven Late Glacial (15–10 ka BP) maximum advance in the western part of the Altiplano (18°S–23°S), a temperature-driven maximum advance during full glacial times (LGM) in the eastern cordillera, and a pre- and post-LGM (32 ka BP/14 ka BP) maximum advance around 30°S related to increased precipitation and reduced temperature on the western slope of the Andes. The results indicate the importance of understanding the seasonality and details of the mass balance–climate interaction in order to disentangle drivers for the observed regionally asynchronous past glaciations in the central Andes.
Resumo:
This chapter reviews the history of study and the current status of Mid-Holocene climatic and cultural change in the South Central Andes, which host a wide range of different habitats from Pacific coastal areas up to extremely harsh cold and dry environments of the high mountain plateau, the altiplano or the puna. Paleoenvironmental information reveals high amplitude and rapid changes in effective moisture during the Holocene period and, consequently, dramatically changing environmental conditions. Therefore, this area is suitable to study the response of hunting and gathering societies to environmental changes, because the smallest variations in the climatic conditions have large impacts on resources and the living space of humans. This chapter analyzes environmental and paleoclimatic information from lake sediments, ice cores, pollen profiles, and geomorphic processes and relates these with the cultural and geographic settlement patterns of human occupation in the different habitats in the area of southern Peru, southwest Bolivia, northwest Argentina, and north Chile and puts in perspective of the early and late Holocene to present a representative range of environmental and cultural changes. It has been found that the largest changes took place around 9000 cal yr BP when the humid early Holocene conditions were replaced by extremely arid but highly variable climatic conditions. These resulted in a marked decrease of human occupation, “ecological refuges,” increased mobility, and an orientation toward habitats with relatively stable resources (such as the coast, the puna seca, and “ecological refuges”).
Resumo:
Switchgrass (Panicum virgatum L.) is a perennial grass holding great promise as a biofuel resource. While Michigan’s Upper Peninsula has an appropriate land base and climatic conditions, there is little research exploring the possibilities of switchgrass production. The overall objectives of this research were to investigate switchgrass establishment in the northern edge of its distribution through: investigating the effects of competition on the germination and establishment of switchgrass through the developmental and competitive characteristics of Cave-in-Rock switchgrass and large crabgrass (Digitaria sanguinalis L.) in Michigan’s Upper Peninsula; and, determining the optimum planting depths and timing for switchgrass in Michigan’s Upper Peninsula. For the competition study, a randomized complete block design was installed June 2009 at two locations in Michigan’s Upper Peninsula. Four treatments (0, 1, 4, and 8 plants/m2) of crabgrass were planted with one switchgrass plant. There was a significant difference between switchgrass biomass produced in year one, as a function of crabgrass weed pressure. There was no significant difference between the switchgrass biomass produced in year two versus previous crabgrass weed pressure. There is a significant difference between switchgrass biomass produced in year one and two. For the depth and timing study, a completely randomized design was installed at two locations in Michigan’s Upper Peninsula on seven planting dates (three fall 2009, and four spring 2010); 25 seeds were planted 2 cm apart along 0.5 m rows at depths of: 0.6 cm, 1.3 cm, and 1.9 cm. Emergence and biomass yields were compared by planting date, and depths. A greenhouse seeding experiment was established using the same planting depths and parameters as the field study. The number of seedlings was tallied daily for 30 days. There was a significant difference in survivorship between the fall and spring planting dates, with the spring being more successful. Of the four spring planting dates, there was a significant difference between May and June in emergence and biomass yield. June planting dates had the most percent emergence and total survivorship. There is no significant difference between planting switchgrass at depths of 0.6 cm, 1.3 cm, and 1.9 cm. In conclusion, switchgrass showed no signs of a legacy effect of competition from year one, on biomass production. Overall, an antagonistic effect on switchgrass biomass yield during the establishment period has been observed as a result of increasing competing weed pressure. When planting switchgrass in Michigan’s Upper Peninsula, it should be done in the spring, within the first two weeks of June, at any depth ranging from 0.6 cm to 1.9 cm.