901 resultados para Classification image technique


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To examine the use of image analysis to quantify changes in ocular physiology. Method: A purpose designed computer program was written to objectively quantify bulbar hyperaemia, tarsal redness, corneal staining and tarsal staining. Thresholding, colour extraction and edge detection paradigms were investigated. The repeatability (stability) of each technique to changes in image luminance was assessed. A clinical pictorial grading scale was analysed to examine the repeatability and validity of the chosen image analysis technique. Results: Edge detection using a 3 × 3 kernel was found to be the most stable to changes in image luminance (2.6% over a +60 to -90% luminance range) and correlated well with the CCLRU scale images of bulbar hyperaemia (r = 0.96), corneal staining (r = 0.85) and the staining of palpebral roughness (r = 0.96). Extraction of the red colour plane demonstrated the best correlation-sensitivity combination for palpebral hyperaemia (r = 0.96). Repeatability variability was <0.5%. Conclusions: Digital imaging, in conjunction with computerised image analysis, allows objective, clinically valid and repeatable quantification of ocular features. It offers the possibility of improved diagnosis and monitoring of changes in ocular physiology in clinical practice. © 2003 British Contact Lens Association. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimensionality reduction is a very important step in the data mining process. In this paper, we consider feature extraction for classification tasks as a technique to overcome problems occurring because of “the curse of dimensionality”. Three different eigenvector-based feature extraction approaches are discussed and three different kinds of applications with respect to classification tasks are considered. The summary of obtained results concerning the accuracy of classification schemes is presented with the conclusion about the search for the most appropriate feature extraction method. The problem how to discover knowledge needed to integrate the feature extraction and classification processes is stated. A decision support system to aid in the integration of the feature extraction and classification processes is proposed. The goals and requirements set for the decision support system and its basic structure are defined. The means of knowledge acquisition needed to build up the proposed system are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a novel method for an application of digital image processing, Edge Detection is developed. The contemporary Fuzzy logic, a key concept of artificial intelligence helps to implement the fuzzy relative pixel value algorithms and helps to find and highlight all the edges associated with an image by checking the relative pixel values and thus provides an algorithm to abridge the concepts of digital image processing and artificial intelligence. Exhaustive scanning of an image using the windowing technique takes place which is subjected to a set of fuzzy conditions for the comparison of pixel values with adjacent pixels to check the pixel magnitude gradient in the window. After the testing of fuzzy conditions the appropriate values are allocated to the pixels in the window under testing to provide an image highlighted with all the associated edges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.7, I.7.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62J12, 62F35

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.4.9, I.4.10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our modular approach to data hiding is an innovative concept in the data hiding research field. It enables the creation of modular digital watermarking methods that have extendable features and are designed for use in web applications. The methods consist of two types of modules – a basic module and an application-specific module. The basic module mainly provides features which are connected with the specific image format. As JPEG is a preferred image format on the Internet, we have put a focus on the achievement of a robust and error-free embedding and retrieval of the embedded data in JPEG images. The application-specific modules are adaptable to user requirements in the concrete web application. The experimental results of the modular data watermarking are very promising. They indicate excellent image quality, satisfactory size of the embedded data and perfect robustness against JPEG transformations with prespecified compression ratios. ACM Computing Classification System (1998): C.2.0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential evolution is an optimisation technique that has been successfully employed in various applications. In this paper, we apply differential evolution to the problem of extracting the optimal colours of a colour map for quantised images. The choice of entries in the colour map is crucial for the resulting image quality as it forms a look-up table that is used for all pixels in the image. We show that differential evolution can be effectively employed as a method for deriving the entries in the map. In order to optimise the image quality, our differential evolution approach is combined with a local search method that is guaranteed to find the local optimal colour map. This hybrid approach is shown to outperform various commonly used colour quantisation algorithms on a set of standard images. Copyright © 2010 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this research are to analyze and develop a modified Principal Component Analysis (PCA) and to develop a two-dimensional PCA with applications in image processing. PCA is a classical multivariate technique where its mathematical treatment is purely based on the eigensystem of positive-definite symmetric matrices. Its main function is to statistically transform a set of correlated variables to a new set of uncorrelated variables over $\IR\sp{n}$ by retaining most of the variations present in the original variables.^ The variances of the Principal Components (PCs) obtained from the modified PCA form a correlation matrix of the original variables. The decomposition of this correlation matrix into a diagonal matrix produces a set of orthonormal basis that can be used to linearly transform the given PCs. It is this linear transformation that reproduces the original variables. The two-dimensional PCA can be devised as a two successive of one-dimensional PCA. It can be shown that, for an $m\times n$ matrix, the PCs obtained from the two-dimensional PCA are the singular values of that matrix.^ In this research, several applications for image analysis based on PCA are developed, i.e., edge detection, feature extraction, and multi-resolution PCA decomposition and reconstruction. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation develops a new figure of merit to measure the similarity (or dissimilarity) of Gaussian distributions through a novel concept that relates the Fisher distance to the percentage of data overlap. The derivations are expanded to provide a generalized mathematical platform for determining an optimal separating boundary of Gaussian distributions in multiple dimensions. Real-world data used for implementation and in carrying out feasibility studies were provided by Beckman-Coulter. It is noted that although the data used is flow cytometric in nature, the mathematics are general in their derivation to include other types of data as long as their statistical behavior approximate Gaussian distributions. ^ Because this new figure of merit is heavily based on the statistical nature of the data, a new filtering technique is introduced to accommodate for the accumulation process involved with histogram data. When data is accumulated into a frequency histogram, the data is inherently smoothed in a linear fashion, since an averaging effect is taking place as the histogram is generated. This new filtering scheme addresses data that is accumulated in the uneven resolution of the channels of the frequency histogram. ^ The qualitative interpretation of flow cytometric data is currently a time consuming and imprecise method for evaluating histogram data. This method offers a broader spectrum of capabilities in the analysis of histograms, since the figure of merit derived in this dissertation integrates within its mathematics both a measure of similarity and the percentage of overlap between the distributions under analysis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10-100 km**2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10-1000 km**2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10-35 km**2) in Australia, Fiji, and Palau; and for three complex reef systems (300-600 km**2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: 'reef', 'reef type', 'geomorphic zone', and 'benthic community'. The overall accuracy of the 'geomorphic zone' classification for each of the six study sites was 76-82% using 6-10 mapping categories. For 'benthic community' classification, the overall accuracy was 52-75% with individual reefs having 14-17 categories and reef systems 20-30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A circumpolar representative and consistent wetland map is required for a range of applications ranging from upscaling of carbon fluxes and pools to climate modelling and wildlife habitat assessment. Currently available data sets lack sufficient accuracy and/or thematic detail in many regions of the Arctic. Synthetic aperture radar (SAR) data from satellites have already been shown to be suitable for wetland mapping. Envisat Advanced SAR (ASAR) provides global medium-resolution data which are examined with particular focus on spatial wetness patterns in this study. It was found that winter minimum backscatter values as well as their differences to summer minimum values reflect vegetation physiognomy units of certain wetness regimes. Low winter backscatter values are mostly found in areas vegetated by plant communities typically for wet regions in the tundra biome, due to low roughness and low volume scattering caused by the predominant vegetation. Summer to winter difference backscatter values, which in contrast to the winter values depend almost solely on soil moisture content, show expected higher values for wet regions. While the approach using difference values would seem more reasonable in order to delineate wetness patterns considering its direct link to soil moisture, it was found that a classification of winter minimum backscatter values is more applicable in tundra regions due to its better separability into wetness classes. Previous approaches for wetland detection have investigated the impact of liquid water in the soil on backscatter conditions. In this study the absence of liquid water is utilized. Owing to a lack of comparable regional to circumpolar data with respect to thematic detail, a potential wetland map cannot directly be validated; however, one might claim the validity of such a product by comparison with vegetation maps, which hold some information on the wetness status of certain classes. It was shown that the Envisat ASAR-derived classes are related to wetland classes of conventional vegetation maps, indicating its applicability; 30% of the land area north of the treeline was identified as wetland while conventional maps recorded 1-7%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].