819 resultados para Classification error rate


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interestingly we show that the proposed approach enables the classification of processed data into more and less significant based on their contribution to output quality. Based on such a classification a percentage of less-significant data is being pruned leading to a significant reduction of algorithmic complexity with minimal quality degradation. Indeed, our results indicate that the proposed system can achieve up-to 45% reduction in number of computations with only 4.9% average error in the output quality compared to a conventional FFT based HRV system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a new selective multi-carrier index keying in orthogonal frequency division multiplexing (OFDM) systems that opportunistically modulate both a small subset of sub-carriers and their indices. Particularly, we investigate the performance enhancement in two cases of error propagation sensitive and compromised deviceto-device (D2D) communications. For the performance evaluation, we focus on analyzing the error propagation probability (EPP) introducing the exact and upper bound expressions on the detection error probability, in the presence of both imperfect and perfect detection of active multi-carrier indices. The average EPP results in closedform are generalized for various fading distribution using the moment generating function, and our numerical results clearly show that the proposed approach is desirable for reliable and energy-efficient D2D applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new rate-control algorithm for live video streaming over wireless IP networks, which is based on selective frame discarding. In the proposed mechanism excess 'P' frames are dropped from the output queue at the sender using a congestion estimate based on packet loss statistics obtained from RTCP feedback and from the Data Link (DL) layer. The performance of the algorithm is evaluated through computer simulation. This paper also presents a characterisation of packet losses owing to transmission errors and congestion, which can help in choosing appropriate strategies to maximise the video quality experienced by the end user. Copyright © 2007 Inderscience Enterprises Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study investigates the growth of error in baroclinic waves. It is found that stable or neutral waves are particularly sensitive to errors in the initial condition. Short stable waves are mainly sensitive to phase errors and the ultra long waves to amplitude errors. Analysis simulation experiments have indicated that the amplitudes of the very long waves become usually too small in the free atmosphere, due to the sparse and very irregular distribution of upper air observations. This also applies to the four-dimensional data assimilation experiments, since the amplitudes of the very long waves are usually underpredicted. The numerical experiments reported here show that if the very long waves have these kinds of amplitude errors in the upper troposphere or lower stratosphere the error is rapidly propagated (within a day or two) to the surface and to the lower troposphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we show the results of a comparison simulation study for three classification techniques: Multinomial Logistic Regression (MLR), No Metric Discriminant Analysis (NDA) and Linear Discriminant Analysis (LDA). The measure used to compare the performance of the three techniques was the Error Classification Rate (ECR). We found that MLR and LDA techniques have similar performance and that they are better than DNA when the population multivariate distribution is Normal or Logit-Normal. For the case of log-normal and Sinh(-1)-normal multivariate distributions we found that MLR had the better performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currently, there has been an increasing demand for operational and trustworthy digital data transmission and storage systems. This demand has been augmented by the appearance of large-scale, high-speed data networks for the exchange, processing and storage of digital information in the different spheres. In this paper, we explore a way to achieve this goal. For given positive integers n,r, we establish that corresponding to a binary cyclic code C0[n,n-r], there is a binary cyclic code C[(n+1)3k-1,(n+1)3k-1-3kr], where k is a nonnegative integer, which plays a role in enhancing code rate and error correction capability. In the given scheme, the new code C is in fact responsible to carry data transmitted by C0. Consequently, a codeword of the code C0 can be encoded by the generator matrix of C and therefore this arrangement for transferring data offers a safe and swift mode. © 2013 SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Corresponding to $C_{0}[n,n-r]$, a binary cyclic code generated by a primitive irreducible polynomial $p(X)\in \mathbb{F}_{2}[X]$ of degree $r=2b$, where $b\in \mathbb{Z}^{+}$, we can constitute a binary cyclic code $C[(n+1)^{3^{k}}-1,(n+1)^{3^{k}}-1-3^{k}r]$, which is generated by primitive irreducible generalized polynomial $p(X^{\frac{1}{3^{k}}})\in \mathbb{F}_{2}[X;\frac{1}{3^{k}}\mathbb{Z}_{0}]$ with degree $3^{k}r$, where $k\in \mathbb{Z}^{+}$. This new code $C$ improves the code rate and has error corrections capability higher than $C_{0}$. The purpose of this study is to establish a decoding procedure for $C_{0}$ by using $C$ in such a way that one can obtain an improved code rate and error-correcting capabilities for $C_{0}$.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart, by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are nonlinear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of nonlinear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and seven classes of arrhythmia. We present some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. We also extracted features from the HOS and performed an analysis of variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. The solder joint inspection problem is more challenging than many other visual inspections because of the variability in the appearance of solder joints. Although many research works and various techniques have been developed to classify defect in solder joints, these methods have complex systems of illumination for image acquisition and complicated classification algorithms. An important stage of the analysis is to select the right method for the classification. Better inspection technologies are needed to fill the gap between available inspection capabilities and industry systems. This dissertation aims to provide a solution that can overcome some of the limitations of current inspection techniques. This research proposes two inspection steps for automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localization and segmentation. The illumination normalisation approach can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image. The “back-end” inspection involves the classification of solder joints by using Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. Further testing demonstrates the advantage of Log Gabor filter over both Discrete Wavelet Transform and Discrete Cosine Transform. Classifier score fusion is analysed for improving recognition rate. Experimental results demonstrate that the proposed system improves performance and robustness in terms of classification rates. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. In fact, the choice of suitable features allows one to overcome the problem given by the use of non complex illumination systems. The new system proposed in this research can be incorporated in the development of an automated non-contact, non-destructive and low cost solder joint quality inspection system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of binary classification where the classifier can, for a particular cost, choose not to classify an observation. Just as in the conventional classification problem, minimization of the sample average of the cost is a difficult optimization problem. As an alternative, we propose the optimization of a certain convex loss function φ, analogous to the hinge loss used in support vector machines (SVMs). Its convexity ensures that the sample average of this surrogate loss can be efficiently minimized. We study its statistical properties. We show that minimizing the expected surrogate loss—the φ-risk—also minimizes the risk. We also study the rate at which the φ-risk approaches its minimum value. We show that fast rates are possible when the conditional probability P(Y=1|X) is unlikely to be close to certain critical values.