1000 resultados para Cibicidoides spp., d18O


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Agulhas Bank region, south of Africa, is an oceanographically important and complex area. The leakage of warm saline Indian Ocean water into the South Atlantic around the southern tip of Africa is a crucial factor in the global thermohaline circulation. Foraminiferal assemblage, stable isotope and sedimentological data from the top 10 m of core MD962080, recovered from the western Agulhas Bank Slope, are used to indicate changes in water mass circulation in the southeastern South Atlantic for the last 450 kyr. Sedimentological and planktonic foraminiferal data give clear signals of cold water intrusions. The benthic stable isotope record provides the stratigraphic framework and indicates that the last four climatic cycles are represented (i.e. down to marine isotope stage (MIS) 12). The planktonic foraminiferal assemblages bear a clear transitional to subantarctic character with Globorotalia inflata and Neogloboquadrina pachyderma (dextral) being the dominant taxa. Input of cold, subantarctic waters into the region by means of leakage through the Subtropical Convergence, as part of Agulhas ring shedding, and a general cooling of surface waters is suggested by increased occurrence of the subantarctic assemblage during glacial periods. Variable input of Indian Ocean waters via the Agulhas Current is indicated by the presence of tropical/subtropical planktonic foraminiferal species Globoquadrina dutertrei, Globigerinoides ruber (alba) and Globorotalia menardii with maximum leakage occurring at glacial terminations. The continuous presence of G. menardii throughout the core suggests that the exchange of water from the South Indian Ocean to the South Atlantic Ocean was never entirely obstructed in the last 450 kyr. The benthic carbon isotope record and sediment textural data reflect a change in bottom water masses over the core location from North Atlantic Deep Water to Upper Southern Component Water. Planktonic foraminiferal assemblages and sediment composition indicate a profound change in surface water conditions over the core site approximately 200-250 kyr BP, during MIS 7, from mixed subantarctic and transitional water masses to overall warmer surface water conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geochemical analyses of extraordinarily well preserved late Aptian-early Albian foraminifera from Blake Nose (Ocean Drilling Program Site 1049) reveal rapid shifts of d18O, d13C, and 87Sr/88Sr in the subtropical North Atlantic that may be linked to a major planktic foraminifer extinction event across the Aptian/Albian boundary. The abruptness of the observed geochemical shifts and their coincidence with a sharp lithologic contact is explained as an artifact of a previously undetected hiatus of 0.8-1.4 million years at the boundary contact, but the values before and after the hiatus indicate that major oceanographic changes occurred at this time. 87Sr/88Sr increase by ~0.000200, d13C values decrease by 1.5 per mil to 2.2 per mil, and d18O values decrease by ~1.0 per mil (planktics) to 0.5 per mil (benthics) across the hiatus. Further, both 87Sr/88Sr ratios and d18O values during the Albian are anomalously high. The 87Sr/88Sr values deviate from known patterns to such a degree that an explanation requires either the presence of inter-basin differences in seawater 87Sr/88Sr during the Albian or revision of the seawater curve. For d18O, planktic values in some Aptian samples likely reflect a diagenetic overprint, but preservation is excellent in the rest of the section. In well preserved material, benthic foraminiferal values are largely between 0.5 and 0.0 per mil and planktic samples are largely between 0.0 per mil to -1.0 per mil, with a brief excursion to -2.0 per mil during OAE 1b. Using standard assumptions for Cretaceous isotopic paleotemperature calculations, the d18O values suggest bottom water temperatures (at ~1000 -1500 m) of 8-10°C and surface temperatures of 10-14°C, which are 4-6°C and 10-16°C cooler, respectively, than present-day conditions at the same latitude. The cool subtropical sea surface temperature estimates are especially problematic because other paleoclimate proxy data for the mid-Cretaceous and climate model predictions suggest that subtropical sea surface temperatures should have been the same as or warmer than at present. Because of their exquisite preservation, whole scale alteration of the analyzed foraminifera is an untenable explanation. Our proposed solution is a high evaporative fractionation factor in the early Albian North Atlantic that resulted in surface waters with higher d18O values at elevated salinities than commonly cited in Cretaceous studies. A high fractionation factor is consistent with high rates of vapor export and a vigorous hydrological cycle and, like the Sr isotopes, implies limited connectivity among the individual basins of the Early Cretaceous proto-Atlantic ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monthly samples of stratified plankton tows taken from the slope waters off Cape Cod nearly 25 years ago are used to describe the seasonal succession of planktonic foraminifera and their oxygen isotope ratios. The 15°C seasonal cycle of sea surface temperature (SST) accounts for a diverse mixture of tropical to subpolar species. Summer samples include various Globigerinoides and Neogloboquadrina dutertrei, whereas winter and early spring species include Globigerina bulloides and Neogloboquadrina pachyderma (dextral). Globorotalia inflata lives all year but at varying water depths. Compared with the fauna in 1960-1961 (described by R. Cifelli), our samples seem warmer. Because sea surface salinity varies little during the year, d18O is mostly a function of SST. Throughout the year, there are always species present with d18O close to the calculated isotopic equilibrium of carbonate with surface seawater. This raises the possibility that seasonality can be estimated directly from the range of d18O in a sediment sample provided that the d18O-salinity relationship is the same as today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluctuations in the abundance of selected foraminiferal indicator species and diversity allowed the reconstruction of changes in deepwater oxygenation and monsoon-driven organic matter fluxes in the deep western Arabian Sea during the last 190 kyr. Times of maximum surface production coincide with periods of intensified SW monsoon as shown by the abundance of Globigerina bulloides and enhanced carbonate corrosion. Benthic ecosystem variability in the deep Arabian Sea is not exclusively driven by variations in monsoonal upwelling and related organic matter supply to the seafloor but also by changes in deepwater ventilation. Deepening of the base of the oxygen minimum zone (OMZ) below 1800 m water depth is strongly coherent on the precessional band but lags proxies of SW monsoon strength by 4 to 6 kyr. The "out-of-phase" relationship between OMZ deepening and maximum SW monsoon strength is explained by temporal changes in the advection of oxygen-rich deepwater masses of North Atlantic and Antarctic origin. This process affected the remineralization and burial efficiency of organic matter in the deep Arabian Sea, resulting in the observed phase lag between maximum monsoon strength and organic carbon preservation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early Miocene to Quaternary benthic foraminifers have been quantitatively studied (>63 ?m size fraction) in a southwest Pacific traverse of DSDP sites at depths from about 1300 to 3200 m down the Lord Howe Rise (Site 590,1299 m; Site 591, 2131 m; Site 206, 3196 m). Benthic foraminiferal species smaller than 150 µm are by far dominant in the samples, averaging from 78 to 89% of the total benthic foraminiferal assemblages in the three sites examined. Although about 150 benthic foraminiferal species or taxonomic groups have been identified, only a few species dominate the assemblages. These dominant species include Epistominella exigua, E. rotunda, and Globocassidulina subglobosa, which prevail in the three sites, and Oridorsalis umbonatus, E. umbonifera, and Cassidulina carinata, which occur usually in frequencies of between 10 and 30%. Faunal changes in Neogene benthic foraminiferal assemblages are not similar in each of the three sites, but faunal successions are most similar between the two shallowest sites. The deepest site differs in composition and distribution of dominant species. There are three intervals during which the most important changes occur in benthic foraminiferal assemblages: the early middle Miocene (14 Ma; the Orbulina suturalis Zone and the Globorotalia fohsi s.l. Zone); the late Miocene (6 Ma; the Globigerina nepenthes Zone) and near the Pliocene/Pleistocene boundary at about 2 Ma. A Q-mode factor analysis of the faunal data has assisted in recognizing assemblage changes during the Neogene at each of the sites. Early Miocene assemblages were dominated by Globocassidulina subglobosa at Site 590 (1299 m), by G. subglobosa and Oridorsalis umbonatus at Site 591 (2131 m), and by G. subglobosa, E. exigua, and Bolivina pusilla at Site 206 (3196 m). In the early middle Miocene at Sites 590 and 591, a marked increase occurred in the frequencies of E. exigua. Epistominella exigua reached maximum abundance in the early Miocene in the deeper Site 206, and in the middle and early late Miocene in the shallower Sites 590 and 591. In the late Miocene, a spike occurred in the frequencies of E. umbonifera in Site 206, whereas the dominant species changed from E. exigua to E. rotunda at Site 590. Latest Miocene to late Pliocene assemblages were dominated by E. rotunda at Site 590, by E. exigua at Site 591, and by G. subglobosa-E. exigua (early Pliocene) and E. rotunda-E. exigua (late Pliocene) at Site 206. At the Pliocene/Pleistocene boundary, E. exigua temporarily diminished in importance at Sites 591 and 206. Quaternary assemblages were dominated by E. rotunda and Cassidulina carinata at Site 590, by E. rotunda at Site 591, and by E. exigua at Site 206. These major faunal changes are all associated with known major paleoceanographic events-the middle Miocene development of the Antarctic ice sheet; the latest Miocene global cooling and increased polar glaciation; and the onset of quasiperiodic glaciation of the Northern Hemisphere. These major paleoceanographic events undoubtedly had a profound effect on the intermediate and deep water mass structure of the Tasman Sea as recorded by changes in benthic foraminiferal assemblages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep-sea sediment Ba* (Ba/Al2O3(sample) * 15% - Ba(aluminosilicate) records show increasing values synchronous with the evolution of the late Paleocene global d13C maximum, reflecting an increase in marine surface primary production and biogenic barite formation at this time. At two oligotrophic locations, Deep Sea Drilling Project (DSDP) Sites 384 and 527 in the North and South Atlantic, respectively, Ba* increases from 160-360 ppm in the early Paleocene to 1100-3000 ppm during the d13C maximum. At equatorial DSDP Site 577, positioned within or near the high-productivity zone, Ba* increases from ~15,500 ppm in the early Paleocene to ~25,400 ppm in conjunction with late Paleocene maximum d13C values. Linear fitted correlation plots of sediment Ba* content versus surface water d13C in all three regions support barite originating in the euphotic zone. The early to late Paleocene relative increase in Ba* illustrates how burial rates of Corg (relative to Al2O3) accelerated by a factor of ~1.8 and ~6.0 in the eutrophic and oligotrophic areas, respectively. A tentative estimate, weighing our result for the entire ocean, suggests that accumulation rates of organic carbon increased by a factor of 2 during the late Paleocene d13C maximum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis examines the closure history of the Central American Seaway (CAS) and its effect on changes in ocean circulation and climate during the time interval from ~6 - 2.5 Ma. It was accomplished within the DFG Research Unit "Impact of Gateways on Ocean Circulation, Climate and Evolution" at the University of Kiel. Proxy records from Ocean Drilling Program (ODP) Sites 999 and 1000 (Caribbean), and from ODP Sites 1237, 1239 and 1241 (low-latitude east Pacific) are developed and examined. In addition, previously established proxy data from Atlantic Sites 925/926 (Ceara Rise) and 1006 (western Great Bahama Bank) and from two east Pacific sites (851, 1236) are included for interpretations. The main objectives of this study are (1) to acquire a consistent stratigraphic framework for all sites, (2) to reconstruct Pliocene changes in Caribbean and tropical east Pacific upper ocean water masses (i.e. temperature, salinity, thermocline depth), and (3) to identify potential underlying forcing mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A late Albian-early Cenomanian record (~103.3 to 99.0 Ma), including organic-rich deposits and a d13C increase associated with oceanic anoxic event 1d (OAE 1d), is described from Ocean Drilling Program sites 1050 and 1052 in the subtropical Atlantic. Foraminifera are well preserved at these sites. Paleotemperatures estimated from benthic d18O values average ~14°C for middle bathyal Site 1050 and ~17°C for upper bathyal Site 1052, whereas surface temperatures are estimated to have ranged from 26°C to 31°C at both sites. Among planktonic foraminifera, there is a steady balance of speciation and extinction with no discrete time of major faunal turnover. OAE 1d is recognized on the basis of a 1.2 per mill d13C increase (~100.0-99.6 Ma), which is similar in age and magnitude to d13C excursions documented in the North Atlantic and western Tethys. Organic-rich "black shales" are present throughout the studied interval at both sites. However, deposition of individual black shale beds was not synchronous between sites, and most of the black shale was deposited before the OAE 1d d13C increase. A similar pattern is observed at the other sites where OAE 1d has been recognized indicating that the site(s) of excess organic carbon burial that could have caused the d13C increase has (have) yet to be found. Our findings add weight to the view that OAEs should be chemostratigraphically (d13C) rather than lithostratigraphically defined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report oxygen and carbon stable isotope analyses of foraminifers, primarily planktonic, sampled at low resolution in the Cretaceous and Paleogene sections from Sites 1257, 1258, and 1260. Data from two samples from Site 1259 are also reported. The very low resolution of the data only allows us to detect climate-driven isotopic events on the timescale of more than 500 k.y. A several million-year-long interval of overall increase in planktonic 18O is seen in the Cenomanian at Site 1260. Before and after this interval, foraminifers from Cenomanian and Turonian black shales have d18O values in the range -4.2 per mil to -5.0 per mil, suggestive of upper ocean temperatures higher than modern tropical values. The d18O values of upper ocean dwelling Paleogene planktonics exhibit a long-term increase from the early Eocene to the middle Eocene. During shipboard and postcruise processing, it proved difficult to extract well-preserved foraminifer tests from black shales by conventional techniques. Here, we report results of a test of procedures for cleaning foraminifers in Cretaceous organic-rich mudstone sediments using various combinations of soaking in bleach, Calgon/hydrogen peroxide, or Cascade, accompanied by drying, repeat soaking, or sonication. A procedure that used 100% bleach, no detergent, and no sonication yielded the largest number of clean, whole individual foraminifers with the shortest preparation time. We found no significant difference in d18O or d13C values among sets of multiple samples of the planktonic foraminifer Whiteinella baltica extracted following each cleaning procedure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Benthic foraminifers from Ocean Drilling Program Leg 199 Holes 1215A, 1220B, and 1221C were examined across the Paleocene/Eocene boundary. Assemblages were studied in 240 samples. The benthic foraminiferal extinction event that correlates with the Paleocene/Eocene epoch boundary was recognized at these sites. Benthic assemblages before the event are characterized by high diversity, but those after the event are low in diversity. An assemblage of agglutinated foraminifers without carbonate cement was recognized at Sites 1220 and 1221. These assemblages were typically found after the event. The discovery of such agglutinated assemblages has never been reported before at this boundary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed analyses of well-preserved carbonate samples from across the Cretaceous/Tertiary boundary in Hole 577 have revealed a significant decline in the d13C values of calcareous nannoplankton from the Maestrichtian to the Danian Age accompanied by a substantial reduction in carbonate accumulation rates. Benthic foraminifers, however, do not exhibit a shift in carbon composition similar to that recorded by the calcareous nannoplankton, but actually increase slightly over the same time interval. These results are similar to the earlier findings at two North Pacific Deep Sea Drilling Project locations, Sites 47.2 and 465, and are considered to represent a dramatic decrease in oceanic phytoplankton production associated with the catastrophic Cretaceous/Tertiary boundary extinctions. In addition, the change in carbon composition of calcareous nannoplankton across the Cretaceous/Tertiary boundary at Hole 577 is accompanied by only minor changes in the oxygen isotope trends of both calcareous nannoplankton and benthic foraminifers, suggesting that temperature variations in the North Pacific from the late Maestrichtian to the early Danian Age were insignificant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present benthic isotope stratigraphies for Sites 1236, 1237, 1239, and 1241 that span the late Miocene-Pliocene time interval from 6 to 2.4 Ma. Orbitally tuned timescales were generated for Sites 1237 and 1241 by correlating the high-frequency variations in gamma ray attenuation density, percent sand of the carbonate fraction, and benthic d13C to variations in Earth's orbital parameters. The astronomical timescales for Sites 1237 and 1241 are in agreement with the one from Atlantic Site 925/926 (Ocean Drilling Program Leg 154). The comparison of benthic d18O and d13C records from the east Pacific sites and Atlantic Site 925/926 revealed a surprising clarity of the "41-k.y. signal" in d13C records and a remarkably good correlation between their d13C records. This suggests that the late Miocene-Pliocene amplitudes of obliquity-related d13C cycles reflect a magnitude of global response often larger than that provided by obliquity-related d18O cycles. At Site 1237, the orbitally derived ages of Pliocene magnetic reversal boundaries between the base of Réunion and the top of Thvera confirm astronomical datings of the generally accepted ATNTS2004 timescale, except for the top of Kaena and the base of Sidufjall. Our astronomical age for the top of Kaena is about one obliquity cycle older. The base of Sidufjall appears to be about one precession cycle younger. The age models of Sites 1236 and 1239 were established by correlating their benthic d18O and d13C records directly to the orbitally tuned isotope record of Site 1241.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (epsilon p) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon p, derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 (c e) based on a new, site-specific calibration of the relationship between epsilon p and c e. The calibration was based on reassessment of existing epsilon p versus c e data, which support a physiologically based model in which epsilon p is inversely related to c e. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK 37. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon p and 1/c e. These are discussed in detail and it is concluded that the observed record of epsilon p most probably reflects significant variations in Delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 µatm during glacial intervals (ocean > atmosphere) to ~60 µatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of Delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Cretaceous Heterohelix moremani (Cushman) was the only biserial planktonic foraminiferal species from its first appearance in the late Albian up to the Cenomanian/Turonian boundary. Within that time, it increased gradually in abundance relative to other planktonic foraminifera in five Circum-North Atlantic sections. It is generally rare in upper Albian sediments, common in most of the Cenomanian and very abundant in sediments representing the latest Cenomanian Oceanic Anoxic Event. Short-term variations on the overall abundance trend correlate with positive excursions in the bulk carbonate delta13C record. Maximum rain rates of H. moremani during OAE2 show that this species was an opportunist that did well in extreme conditions, but its overall distribution indicates that it is not necessarily a marker for very high palaeoproductivity environments. Stable oxygen and carbon isotope measurements on foraminiferal species indicate that H. moremani was a surface water dweller at least in part of its geographic range, but incorporated 13C out of equilibrium with ambient seawater. It is depleted in delta13C relative to other planktonic foraminifera, which is attributed to vital effects related to its opportunistic character.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study presents new evidence of when and how the Western Pacific Warm Pool (WPWP) was established in its present form. We analyzed planktic foraminifera, oxygen isotopes, and Mg/Ca ratios in upper Miocene through Pleistocene sediments collected at Deep Sea Drilling Program (DSDP) Site 292. These data were then compared with those reported from Ocean Drilling Program (ODP) Site 806. Both drilling sites are located in the western Pacific Ocean. DSDP Site 292 is located in the northern margin of the modern WPWP and ODP Site 806 near the center of the WPWP. Three stages of development in surface-water conditions are identified in the region using planktic foraminferal data. During the initial stage, from 8.5 to 4.4 Ma, Site 806 was overlain by warm surface water but Site 292 was not, as indicated by the differences in faunal compositions and sea-surface temperature (SST) between the two sites. In addition, the vertical thermal gradient at Site 292 was weak during this period, as indicated by the small differences in the delta18O values between Globigerinoides sacculifer and Pulleniatina spp. During stage two, from 4.4 to 3.6 Ma, the SST at Site 292 rapidly increased to 27 °C, but the vertical thermal gradient had not yet be strengthened, as shown by Mg/Ca ratios and the presence of both mixed-layer dwellers and thermocline dwellers. Finally, a warm mixed layer with a high SST ca. 28 °C and a strong vertical thermal gradient were established at Site 292 by 3.6 Ma. This event is marked by the dominance of mixed-layer dwellers, a high and stable SST, and a larger differences in the delta18O values between G. sacculifer and Pulleniatina spp. Thus, evidence of surface-water evolution in the western Pacific suggests that Site 292 came under the influence of the WPWP at 3.6 Ma. The northward expansion of the WPWP from 4.4 to 3.6 Ma and the establishment of the modern WPWP by 3.6 Ma appear to be closely related to the closure of the Indonesian and Central American seaways.