490 resultados para Charlie transposon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bis-(3´-5´)-cyclic dimeric guanosine monophosphate, or cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger that regulates processes such biofilm formation, motility, and virulence. C-di-GMP is synthesized by diguanylate cyclases (DGCs), while phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG), which is then hydrolyzed to two GMPs by previously unidentified enzymes termed PDE-Bs. To identify the PDE-B responsible for pGpG turnover, a screen for pGpG binding proteins in a Vibrio cholerae open reading frame library was conducted to identify potential pGpG binding proteins. This screen led to identification of oligoribonuclease (Orn). Purified Orn binds to pGpG and can cleave pGpG to GMP in vitro. A deletion mutant of orn in Pseudomonas aeruginosa was highly defective in pGpG turnover and accumulated pGpG. Deletion of orn also resulted in accumulation c-di-GMP, likely through pGpG-mediated inhibition of the PDE-As, causing an increase in c-di-GMP-governed auto-aggregation and biofilm. Thus, we found that Orn serves as the primary PDE-B enzyme in P. aeruginosa that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. However, not all bacteria that utilize c-di-GMP signaling also have an ortholog of orn, suggesting that other PDE-Bs must be present. Therefore, we asked whether RNases that cleave small oligoribonucleotides in other species could also act as PDE-Bs. NrnA, NrnB, and NrnC can rapidly degrade pGpG to GMP. Furthermore, they can reduce the elevated aggregation and biofilm formation in P. aeruginosa ∆orn. Together, these results indicate that rather than having a single dedicated PDE-B, different bacteria utilize distinct RNases to cleave pGpG and complete c-di-GMP signaling. The ∆orn strain also has a growth defect, indicating changes in other regulatory processes that could be due to pGpG accumulation, c-di-GMP accumulation, or another effect due to loss of Orn. We sought to investigate the genetic pathways responsible for these growth defect phenotypes by use of a transposon suppressor screen, and also investigated transcriptional changes using RNA-Seq. This work identifies that c-di-GMP degradation intersects with RNA degradation at the point of the Orn and the functionally related RNases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disseminated nocardiosis of the central nervous system (CNS) has been rarely reported, especially in the immunocompetent patient. We report a case of cerebral and cervical intradural extramedullary nocardiosis likely to have been the result of disseminated spread from a pulmonary infective focus. Attempts at tissue biopsy and culture of the initial cerebral and pulmonary lesions both failed to yield the diagnosis. Interval development of a symptomatic intradural extramedullary cervical lesion resulted in open biopsy and an eventual diagnosis of nocardiosis was made. We highlight the diagnostic dilemma and rarity of spinal nocardial dissemination in an immunocompetent individual.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CATARINA Leg1 cruise was carried out from June 22 to July 24 2012 on board the B/O Sarmiento de Gamboa, under the scientific supervision of Aida Rios (CSIC-IIM). It included the occurrence of the OVIDE hydrological section that was performed in June 2002, 2004, 2006, 2008 and 2010, as part of the CLIVAR program (name A25) ), and under the supervision of Herlé Mercier (CNRSLPO). This section begins near Lisbon (Portugal), runs through the West European Basin and the Iceland Basin, crosses the Reykjanes Ridge (300 miles north of Charlie-Gibbs Fracture Zone, and ends at Cape Hoppe (southeast tip of Greenland). The objective of this repeated hydrological section is to monitor the variability of water mass properties and main current transports in the basin, complementing the international observation array relevant for climate studies. In addition, the Labrador Sea was partly sampled (stations 101-108) between Greenland and Newfoundland, but heavy weather conditions prevented the achievement of the section south of 53°40’N. The quality of CTD data is essential to reach the first objective of the CATARINA project, i.e. to quantify the Meridional Overturning Circulation and water mass ventilation changes and their effect on the changes in the anthropogenic carbon ocean uptake and storage capacity. The CATARINA project was mainly funded by the Spanish Ministry of Sciences and Innovation and co-funded by the Fondo Europeo de Desarrollo Regional. The hydrological OVIDE section includes 95 surface-bottom stations from coast to coast, collecting profiles of temperature, salinity, oxygen and currents, spaced by 2 to 25 Nm depending on the steepness of the topography. The position of the stations closely follows that of OVIDE 2002. In addition, 8 stations were carried out in the Labrador Sea. From the 24 bottles closed at various depth at each stations, samples of sea water are used for salinity and oxygen calibration, and for measurements of biogeochemical components that are not reported here. The data were acquired with a Seabird CTD (SBE911+) and an SBE43 for the dissolved oxygen, belonging to the Spanish UTM group. The software SBE data processing was used after decoding and cleaning the raw data. Then, the LPO matlab toolbox was used to calibrate and bin the data as it was done for the previous OVIDE cruises, using on the one hand pre and post-cruise calibration results for the pressure and temperature sensors (done at Ifremer) and on the other hand the water samples of the 24 bottles of the rosette at each station for the salinity and dissolved oxygen data. A final accuracy of 0.002°C, 0.002 psu and 0.04 ml/l (2.3 umol/kg) was obtained on final profiles of temperature, salinity and dissolved oxygen, compatible with international requirements issued from the WOCE program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foi um prazer ler o último romance de Lídia Jorge, editado em março último, pela Dom Quixote. E as razões foram muitas. Porque fala de um dia da nossa história que me diz bastante: o 25 de abril de 1974. Apesar de ter dele apenas uma vaga ideia, foi sendo sempre falado na minha família e faz parte do meu presente. Porque reconheço grande parte da história ali contada, fazendo-me sentir cúmplice, quer do texto, quer dos acontecimentos. Porque o romance é um género que faz falta para contar a História. É um modo de chegar a muito mais gente que, depois de o ler (ou enquanto o vai lendo), vai ter vontade de ir procurar os outros livros – os de História não romanceada – para aprender sobre as horas daquela noite de 24 para 25 e sobre os seus protagonistas. Apesar da «transfiguração literária », como se lê na nota de edição, quem sabe se não os reconhecerá? E saltando muitas outras razões, porque é um livro muito bem escrito. As pontas que vão sendo soltas ao longo da narrativa juntam-se em outros momentos, completando quadros de sentido. Ana Maria Machada, a narradora, como participante da história, sabe tanto como nós sobre o que pensam as outras personagens, mas sabe um bocadinho mais do que, em certos momentos, conta. Por exemplo, quando a equipa de reportagem entrevista a viúva de um dos capitães de Abril (que percebemos ser Salgueiro Maia, apesar de apenas ser referido pela sua «alcunha doméstica», isto é, pelo nome que a mãe de Ana Maria lhe dera: Charlie 8) e tenta conseguir que esta diga quem queria mal ao marido, perante a relutância em acusar alguém, a «Machadinha» afirma «Nós sabíamos, mas não tão bem como ela, que as vinganças de que foram vítimas ele e os outros como ele, tinham tido autores concretos, nomeáveis, intérpretes e responsáveis, colocados no topo das estruturas criadas num país onde passara a haver liberdade para legitimar tudo e o seu contrário» (p. 249).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this issue...Butte Symphony, Dr. Adam Smith, NASA, Petroleum Engineering Scholarship, Charlie Brown, Peanuts Cartoon, Glee club, Library-Museum Building

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this issue...NASA, College Business Symposium, Marcus Daly, Charlie Brown, Caterpillar Company, Copper Lounge, Student Union Building

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this issue...Coach Charlie Armey, Veterans, Marcus Daly, Campus Pollution, Satellites, Campus Parking, Elks National Foundation, Kieth Strom, International Club

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this issue...Peace Corps, National Wildlife Federation, Powder Puff Football, Geological Map, Arnold Olsen, Seventeen Magazine, Frozen Daiquiri

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation delved into the role of a recently reported chromosomal β-lactamase in P. aeruginosa called PoxB. To date, no detailed studies have addressed the regulation of poxB expression and its contribution to β-lactam resistance in P. aeruginosa. In an effort to better understand the role of this β-lactamase, poxB was deleted from the chromosome and expressed in trans from an IPTG-inducible promoter. The loss of poxB did not affect susceptibility. However, expression in trans in the absence of ampC rendered strains more resistant to the carbapenem β-lactams. The carbapenem-hydrolyzing phenotype was enhanced, reaching intermediate and resistant clinical breakpoints, in the absence of the carbapenem-specific outer membrane porin OprD. As observed for most class D β-lactamases, PoxB was only weakly inhibited by the currently available β-lactamase inhibitors. Moreover, poxB was shown to form an operon with the upstream located poxA, whose expression in trans decreased pox promoter (Ppox) activity suggesting autoregulation. The transcriptional regulator AmpR negatively controlled Ppox activity, however no direct interaction could be demonstrated. A mariner transposon library identified genes involved in the transport of polyamines as potential regulators of pox expression. Unexpectedly, polyamines themselves were able induce resistance to carbapenems. In summary, P. aeruginosa carries a chromosomal-encoded β-lactamase PoxB that can provide resistance against the clinically relevant carbapenems despite its narrow spectrum of hydrolysis and whose activity in vivo may be regulated by polyamines.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.