982 resultados para Cephalopoda, Fossil.
Resumo:
Analysis of fossils from cave deposits at Mount Etna (eastern-central Queensland) has established that a species-rich rainforest palaeoenvironment existed in that area during the middle Pleistocene. This unexpected finding has implications for several fields (e.g., biogeography/phylogeography of rainforest-adapted taxa, and the impact of climate change on rainforest communities), but it was unknown whether the Mount Etna sites represented a small refugial patch of rainforest or was more widespread. In this study numerous bone deposits in caves in north-east Queensland are analysed to reconstruct the environmental history of the area during the late Quaternary. Study sites are in the Chillagoe/Mitchell Palmer and Broken River/Christmas Creek areas. The cave fossil records in these study areas are compared with dated (middle Pleistocene-Holocene) cave sites in the Mount Etna area. Substantial taxonomic work on the Mount Etna faunas (particularly dasyurid marsupials and murine rodents) is also presented as a prerequisite for meaningful comparison with the study sites further north. Middle Pleistocene sites at Mount Etna contain species indicative of a rainforest palaeoenvironment. Small mammal assemblages in the Mount Etna rainforest sites (>500-280 ka) are unexpectedly diverse and composed almost entirely of new species. Included in the rainforest assemblages are lineages with no extant representatives in rainforest (e.g., Leggadina), one genus previously known only from New Guinea (Abeomelomys), and forms that appear to bridge gaps between related but morphologically-divergent extant taxa ('B-rat' and 'Pseudomys C'). Curiously, some taxa (e.g., Melomys spp.) are notable for their absence from the Mount Etna rainforest sites. After 280 ka the rainforest faunas are replaced by species adapted to open, dry habitats. At that time the extinct ‘rainforest’ dasyurids and rodents are replaced by species that are either extant or recently extant. By the late Pleistocene all ‘rainforest’ and several ‘dry’ taxa are locally or completely extinct, and the small mammal fauna resembles that found in the area today. The faunal/environmental changes recorded in the Mount Etna sites were interpreted by previous workers as the result of shifts in climate during the Pleistocene. Many samples from caves in the Chillagoe/Mitchell-Palmer and Broken River/Christmas Creek areas are held in the Queensland Museum’s collection. These, supplemented with additional samples collected in the field as well as samples supplied by other workers, were systematically and palaeoecologically analysed for the first time. Palaeoecological interpretation of the faunal assemblages in the sites suggests that they encompass a similar array of palaeoenvironments as the Mount Etna sites. ‘Rainforest’ sites at the Broken River are here interpreted as being of similar age to those at Mount Etna, suggesting the possibility of extensive rainforest coverage in eastern tropical Queensland during part of the Pleistocene. Likewise, faunas suggesting open, dry palaeoenvironments are found at Chillagoe, the Broken River and Mount Etna, and may be of similar age. The 'dry' faunal assemblage at Mount Etna (Elephant hole Cave) dates to 205-170 ka. Dating of one of the Chillagoe sites (QML1067) produced a maximum age for the deposit of approximately 200 ka, and the site is interpreted as being close to that age, supporting the interpretation of roughly contemporaneous deposition at Mount Etna and Chillagoe. Finally, study sites interpreted as being of late Pleistocene-Holocene age show faunal similarities to sites of that age near Mount Etna. This study has several important implications for the biogeography and phylogeography of murine rodents, and represents a major advance in the study of the Australian murine fossil record. Likewise the survey of the northern study areas is the first systematic analysis of multiple sites in those areas, and is thus a major contribution to knowledge of tropical Australian faunas during the Quaternary. This analysis suggests that climatic changes during the Pleistocene affected a large area of eastern tropical Queensland in similar ways. Further fieldwork and dating is required to properly analyse the geographical extent and timing of faunal change in eastern tropical Queensland.
Resumo:
Humans have altered environments and enhanced their wellbeing unlike any other creature on the planet (Hielman & Donda, 2007); this is no different whether the environment is ecological, social or organizational. In recent times, the debate regarding greenhouse effects on the global weather patterns and the sustainment of the earth’s temperature necessary for life support has become quite infamously problematic as society pushes to find new sources of energy both renewable and environmentally sustainable. The feedback received on CSG from both government and companies alike is that the opportunities this industry creates has a lasting range of social and economic benefits worth over fifty (50) billion dollars in projects (Queensland Government, 2013). This however, has been overshadowed by social activist and lobbyist groups as ‘Lock the Gate Alliance’ saying, as one part of their report noted from the National Water Commission, “coal seam gas development could cause significant social impacts by disrupting current land-use practices and the local environment through infrastructure construction and access” (Lock the Gate Alliance, n.d.), and “In recent years both a NSW and Federal Senate inquiry into coal seam gas production were deliberately mislead by an organization that claims to work on behalf of the farming community, This is the battle for the end of the fossil fuel industry. This is the end game..." (Ward, 2013).
Resumo:
As a good solution to the shortage and environmental unfriendliness of fossil fuels, plug-in electric vehicles (PEVs) attract much interests of the public. To investigate the problems caused by the integration of numerous PEVs, a lot of research work has been done on the grid impacts of PEVs in aspects including thermal loading, voltage regulation, transformer loss of life, unbalance, losses, and harmonic distortion levels. This paper surveys the-state-of-the-art of the research in this area and outline three possible measures for a power grid company to make full use of PEVs.
Resumo:
The issue of particle emissions from diesel engines is still a matter of concern due its deleterious effects both on human health and environment(Ristovski et al., 2012). Recently, International Agency for Research on Cancer (IARC) inclusion of diesel engine exhaust particles as carcinogenic to human health added a new margin on it. Apart from the use of after treatment technology, biodiesel is also considered as potential way to reduce particle emission alongside with other emissions(Xue, Grift, & Hansen, 2011). Global biodiesel production is still reasonably small compared to its counterpart fossil diesel, but even this small amount comes from a wide variety of feed stocks. Contrary to fossil diesel, the important physicochemical properties of biodiesel vary among different feed stocks(Hoekman, Broch, Robbins, Ceniceros, & Natarajan, 2012).
Resumo:
Electricity is the cornerstone of modern life. It is essential to economic stability and growth, jobs and improved living standards. Electricity is also the fundamental ingredient for a dignified life; it is the source of such basic human requirements as cooked food, a comfortable living temperature and essential health care. For these reasons, it is unimaginable that today's economies could function without electricity and the modern energy services that it delivers. Somewhat ironically, however, the current approach to electricity generation also contributes to two of the gravest and most persistent problems threatening the livelihood of humans. These problems are anthropogenic climate change and sustained human poverty. To address these challenges, the global electricity sector must reduce its reliance on fossil fuel sources. In this context, the object of this research is twofold. Initially it is to consider the design of the Renewable Energy (Electricity) Act 2000 (Cth) (Renewable Electricity Act), which represents Australia's primary regulatory approach to increase the production of renewable sourced electricity. This analysis is conducted by reference to the regulatory models that exist in Germany and Great Britain. Within this context, this thesis then evaluates whether the Renewable Electricity Act is designed effectively to contribute to a more sustainable and dignified electricity generation sector in Australia. On the basis of the appraisal of the Renewable Electricity Act, this thesis contends that while certain aspects of the regulatory regime have merit, ultimately its design does not represent an effective and coherent regulatory approach to increase the production of renewable sourced electricity. In this regard, this thesis proposes a number of recommendations to reform the existing regime. These recommendations are not intended to provide instantaneous or simple solutions to the current regulatory regime. Instead, the purpose of these recommendations is to establish the legal foundations for an effective regulatory regime that is designed to increase the production of renewable sourced electricity in Australia in order to contribute to a more sustainable and dignified approach to electricity production.
Resumo:
Several fringing coral reefs in Moreton Bay, Southeast Queensland, some 300 km south of the Great Barrier Reef (GBR), are set in a relatively high latitude, estuarine environment that is considered marginal for coral growth. Previous work indicated that these marginal reefs, as with many fringing reefs of the inner GBR, ceased accreting in the mid-Holocene. This research presents for the first time data from the subsurface profile of the mid-Holocene fossil reef at Wellington Point comprising U/Th dates of in situ and framework corals, and trace element analysis from the age constrained carbonate fragments. Based on trace element proxies the palaeo-water quality during reef accretion was reconstructed. Results demonstrate that the reef initiated more than 7,000 yr BP during the post glacial transgression, and the initiation progressed to the west as sea level rose. In situ micro-atolls indicate that sea level was at least 1 m above present mean sea level by 6,680 years ago. The reef remained in "catch-up" mode, with a seaward sloping upper surface, until it stopped aggrading abruptly at ca 6,000 yr BP; no lateral progradation occurred. Changes in sediment composition encountered in the cores suggest that after the laterite substrate was covered by the reef, most of the sediment was produced by the carbonate factory with minimal terrigenous influence. Rare earth element, Y and Ba proxies indicate that water quality during reef accretion was similar to oceanic waters, considered suitable for coral growth. A slight decline in water quality on the basis of increased Ba in the later stages of growth may be related to increased riverine input and partial closing up of the bay due to either tidal delta progradation, climatic change and/or slight sea level fall. The age data suggest that termination of reef growth coincided with a slight lowering of sea level, activation of ENSO and consequent increase in seasonality, lowering of temperatures and the constrictions to oceanic flushing. At the cessation of reef accretion the environmental conditions in the western Moreton Bay were changing from open marine to estuarine. The living coral community appears to be similar to the fossil community, but without the branching Acropora spp. that were more common in the fossil reef. In this marginal setting coral growth periods do not always correspond to periods of reef accretion due to insufficient coral abundance. Due to several environmental constraints modern coral growth is insufficient for reef growth. Based on these findings Moreton Bay may be unsuitable as a long term coral refuge for most species currently living in the GBR.
Resumo:
The current view of Australian state and national governments about the effects of climate change on agriculture is that farmers – through the adoption of mitigation and adaptation strategies – will remain resilient, and agricultural production will continue to expand. The assumption is that neoliberalism will provide the best ‘free market’ options for climate change mitigation and adaptation in farming. In contrast, we argue that neoliberalism will increase the move towards productivis (‘high-tech’) agriculture – the very system that has caused major environmental damage to the Australian continent. High-tech farming is highly dependent upon access to water and fossil fuels, both of which would appear to be the main limits to production in future decades. Productivist agriculture is a system highly reliant upon fertilizers and fuels that are derived from the petrochemical industry, and are currently increasing in cost as the price of oil increases.
Resumo:
It is increasingly apparent that sea-level data (e.g. microfossil transfer functions, dated coral microatolls and direct observations from satellite and tidal gauges) vary temporally and spatially at regional to local scales, thus limiting our ability to model future sea-level rise for many regions. Understanding sealevel response at ‘far-field’ locations at regional scales is fundamental for formulating more relevant sea-level rise susceptibility models within these regions under future global change projections. Fossil corals and reefs in particular are valuable tools for reconstructing past sea levels and possible environmental phase shifts beyond the temporal constraints of instrumental records. This study used abundant surface geochronological data based on in situ subfossil corals and precise elevation surveys to determine previous sea level in Moreton Bay, eastern Australia, a far-field site. A total of 64 U-Th dates show that relative sea level was at least 1.1 m above modern lowest astronomical tide (LAT) from at least ˜6600 cal. yr BP. Furthermore, a rapid synchronous demise in coral reef growth occurred in Moreton Bay ˜5800 cal. yr BP, coinciding with reported reef hiatus periods in other areas around the Indo-Pacific region. Evaluating past reef growth patterns and phases allows for a better interpretation of anthropogenic forcing versus natural environmental/climatic cycles that effect reef formation and demise at all scales and may allow better prediction of reef response to future global change.
Resumo:
IODP Expedition 339 drilled five sites in the Gulf of Cadiz and two off the west Iberian margin (November 2011 to January 2012), and recovered 5.5 km of sediment cores with an average recovery of 86.4%. The Gulf of Cadiz was targeted for drilling as a key location for the investigation of Mediterranean outflow water (MOW) through the Gibraltar Gateway and its influence on global circulation and climate. It is also a prime area for understanding the effects of tectonic activity on evolution of the Gibraltar Gateway and on margin sedimentation. We penetrated into the Miocene at two different sites and established a strong signal of MOW in the sedimentary record of the Gulf of Cadiz, following the opening of the Gibraltar Gateway. Preliminary results show the initiation of contourite deposition at 4.2–4.5 Ma, although subsequent research will establish whether this dates the onset of MOW. The Pliocene succession, penetrated at four sites, shows low bottom current activity linked with a weak MOW. Significant widespread unconformities, present in all sites but with hiatuses of variable duration, are interpreted as a signal of intensified MOW, coupled with flow confinement. The Quaternary succession shows a much more pronounced phase of contourite drift development, with two periods of MOW intensification separated by a widespread unconformity. Following this, the final phase of drift evolution established the contourite depositional system (CDS) architecture we see today. There is a significant climate control on this evolution of MOW and bottom-current activity. However, from the closure of the Atlantic–Mediterranean gateways in Spain and Morocco just over 6 Ma and the opening of the Gibraltar Gateway at 5.3 Ma, there has been an even stronger tectonic control on margin development, downslope sediment transport and contourite drift evolution. The Gulf of Cadiz is the world's premier contourite laboratory and thus presents an ideal testing ground for the contourite paradigm. Further study of these contourites will allow us to resolve outstanding issues related to depositional processes, drift budgets, and recognition of fossil contourites in the ancient record on shore. The expedition also verified an enormous quantity and extensive distribution of contourite sands that are clean and well sorted. These represent a relatively untapped and important exploration target for potential oil and gas reservoirs.
Resumo:
Quantitative determination of modification of primary sediment features, by the activity of organisms (i.e., bioturbation) is essential in geosciences. Some methods proposed since the 1960s are mainly based on visual or subjective determinations. The first semiquantitative evaluations of the Bioturbation Index, Ichnofabric Index, or the amount of bioturbation were attempted, in the best cases using a series of flashcards designed in different situations. Recently, more effective methods involve the use of analytical and computational methods such as X-rays, magnetic resonance imaging or computed tomography; these methods are complex and often expensive. This paper presents a compilation of different methods, using Adobe® Photoshop® software CS6, for digital estimation that are a part of the IDIAP (Ichnological Digital Analysis Images Package), which is an inexpensive alternative to recently proposed methods, easy to use, and especially recommended for core samples. The different methods — “Similar Pixel Selection Method (SPSM)”, “Magic Wand Method (MWM)” and the “Color Range Selection Method (CRSM)” — entail advantages and disadvantages depending on the sediment (e.g., composition, color, texture, porosity, etc.) and ichnological features (size of traces, infilling material, burrow wall, etc.). The IDIAP provides an estimation of the amount of trace fossils produced by a particular ichnotaxon, by a whole ichnocoenosis or even for a complete ichnofabric. We recommend the application of the complete IDIAP to a given case study, followed by selection of the most appropriate method. The IDIAP was applied to core material recovered from the IODP Expedition 339, enabling us, for the first time, to arrive at a quantitative estimation of the discrete trace fossil assemblage in core samples.
Resumo:
Global pressures of burgeoning population growth and consumption are threatening efforts to reduce negative environmental pressures associated with development such as atmospheric, land and water pollution. For example, the world’s population is now growing at over 70 million per year or 1 billion per decade (Brown, 2007), increasing from 3.5 billion in 1970, to 5 billion in 1990, to 7 billion by 2010 (United Nations, 2002). In 1990 only 13 percent of the global population lived in cities, while in 2007 more than half did. More than 60 percent of the global population lives within 100 kilometers of the coastline (World Resources Institute, 2005) and nearly all of the population growth hereon is forecast to happen in developing countries (Postel, 1999). Future levels of stress on the global environment are therefore likely to increase if current trends are used for forecasting, which is particularly challenging as scientists are already observing significant signs of degradation and failure in environmental systems. For example, the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, 2007) provided an nequivocal link between climate change and current human activities, in particular: the burning of fossil fuels; deforestation and land clearing; the use of synthetic greenhouse gases; and decomposition of wastes from landfill. The UK Stern Review concluded that within our lifetime there is between a 77 to 99 percent chance (depending on the climate model used) of the global average temperature rising by more than 2 degrees Celsius (Stern, 2006), with a likely greenhouse gas concentration in the atmosphere of 550 parts per million (ppm) or more by around 2100.
Resumo:
Due to rapidly diminishing international supplies of fossil fuels, such as petroleum and diesel, the cost of fuel is constantly increasing, leading to higher costs of living, as a result of the significant reliance of many industries on motor vehicles. Many technologies have been developed to replace part or all of a fossil fuel with bio-fuels. One of the dual fuel technologies is fumigation of ethanol in diesel engines, which injects ethanol into the intake air stream of the engine. The advantage of this is that it avoids any costly modification of the engine high pressure diesel injection system, while reducing the volume of diesel required and potentially increasing the power output and efficiency. This paper investigates the performance of a diesel engine, converted to implement ethanol fumigation. The project will use both existing experimental data, along with generating computer modeled results using the program AVL Boost. The data from both experiments and the numerical simulation indicate desirable results for the peak pressure and the indicated mean effective pressure (IMEP). Increase in ethanol substitution resulted in elevated combustion pressure and an increase in the IMEP, while the variation of ethanol injection location resulted in negligible change. These increases in cylinder pressure led to a higher work output and total efficiency in the engine as the ethanol substitution was increased. In comparing the numerical and experimental results, the simulation showed a slight elevation, due to the inaccuracies in the heat release models. Future work is required to improve the combustion model and investigate the effect of the variation of the location of ethanol injection.
Resumo:
There are many attractive alternatives to produce chemicals similar to those currently produced from fossil fuel resources. The most viable renewable resource of fixed carbon is biomass. This paper examines processing conditions for the production and recovery of furanics from bagasse as well as bagasse pulp. It is shown that bio-oil consisting mainly of furanics (~84% chloromethly furfural) may be obtained in yields of ~78% and ~87% by weight from bagasse and bagasse pulp respectively using a biphasic acid hydrolysis system. The biphasic system consists of an organic layer of dichloroethane and an aqueous phase of concentrated hydrochloric acid. Generally the lower the impurity content and the higher the cellulose content, the higher the furanics yield.
Resumo:
Declining fossil fuels reserves, a need for increased energy security and concerns over carbon emissions from fossil fuel use are the global drivers for alternative, renewable, biosources of fuels and chemicals. In the present study the identification of long chain (C29–C33) saturated hydrocarbons from Nicotiana glauca leaves is reported. The occurrence of these hydrocarbons was detected by gas chromatography–mass spectrometry (GC–MS) and identification confirmed by comparison of physico-chemical properties displayed by the authentic standards available. A simple, robust procedure was developed to enable the generation of an extract containing a high percentage of hydrocarbons (6.3% by weight of dried leaf material) higher than previous reports in other higher plant species consequently, it is concluded that N. glauca could be a crop of greater importance than previously recognised for biofuel production. The plant can be grown on marginal lands, negating the need to compete with food crops or farmland, and the hydrocarbon extract can be produced in a non-invasive manner, leaving remaining biomass intact for bioethanol production and the generation of valuable co-products.
Resumo:
Numerous initiatives have been employed around the world in order to address rising greenhouse gas (GHG) emissions originating from the transport sector. These measures include: travel demand management (congestion‐charging), increased fuel taxes, alternative fuel subsidies and low‐emission vehicle (LEV) rebates. Incentivizing the purchase of LEVs has been one of the more prevalent approaches in attempting to tackle this global issue. LEVs, whilst having the advantage of lower emissions and, in some cases, more efficient fuel consumption, also bring the downsides of increased purchase cost, reduced convenience of vehicle fuelling, and operational uncertainty. To stimulate demand in the face of these challenges, various incentive‐based policies, such as toll exemptions, have been used by national and local governments to encourage the purchase of these types of vehicles. In order to address rising GHG emissions in Stockholm, and in line with the Swedish Government’s ambition to operate a fossil free fleet by 2030, a number of policies were implemented targeting the transport sector. Foremost amongst these was the combination of a congestion charge – initiated to discourage emissions‐intensive travel – and an exemption from this charge for some LEVs, established to encourage a transition towards a ‘green’ vehicle fleet. Although both policies shared the aim of reducing GHG emissions, the exemption for LEVs carried the risk of diminishing the effectiveness of the congestion charging scheme. As the number of vehicle owners choosing to transition to an eligible LEV increased, the congestion‐reduction effectiveness of the charging scheme weakened. In fact, policy makers quickly recognized this potential issue and consequently phased out the LEV exemption less than 18 months after its introduction (1). Several studies have investigated the demand for LEVs through stated‐preference (SP) surveys across multiple countries, including: Denmark (2), Germany (3, 4), UK (5), Canada (6), USA (7, 8) and Australia (9). Although each of these studies differed in approach, all involved SP surveys where differing characteristics between various types of vehicles, including LEVs, were presented to respondents and these respondents in turn made hypothetical decisions about which vehicle they would be most likely to purchase. Although these studies revealed a number of interesting findings in regards to the potential demand for LEVs, they relied on SP data. In contrast, this paper employs an approach where LEV choice is modelled by taking a retrospective view and by using revealed preference (RP) data. By examining the revealed preferences of vehicle owners in Stockholm, this study overcomes one of the principal limitations of SP data, namely that stated preferences may not in fact reflect individuals’ actual choices, such as when cost, time, and inconvenience factors are real rather than hypothetical. This paper’s RP approach involves modelling the characteristics of individuals who purchased new LEVs, whilst estimating the effect of the congestion charging exemption upon choice probabilities and subsequent aggregate demand. The paper contributes to the current literature by examining the effectiveness of a toll exemption under revealed preference conditions, and by assessing the total effect of the policy based on key indicators for policy makers, including: vehicle owner home location, commuting patterns, number of children, age, gender and income. Extended Abstract Submission for Kuhmo Nectar Conference 2014 2 The two main research questions motivating this study were: Which individuals chose to purchase a new LEV in Stockholm in 2008?; and, How did the congestion charging exemption affect the aggregate demand for new LEVs in Stockholm in 2008? In order to answer these research questions the analysis was split into two stages. Firstly, a multinomial logit (MNL) model was used to identify which demographic characteristics were most significantly related to the purchase of an LEV over a conventional vehicle. The three most significant variables were found to be: intra‐cordon residency (positive); commuting across the cordon (positive); and distance of residence from the cordon (negative). In order to estimate the effect of the exemption policy on vehicle purchase choice, the model included variables to control for geographic differences in preferences, based on the location of the vehicle owners’ homes and workplaces in relation to the congestion‐charging cordon boundary. These variables included one indicator representing commutes across the cordon and another indicator representing intra‐cordon residency. The effect of the exemption policy on the probability of purchasing LEVs was estimated in the second stage of the analysis by focusing on the groups of vehicle owners that were most likely to have been affected by the policy i.e. those commuting across the cordon boundary (in both directions). Given the inclusion of the indicator variable representing commutes across the cordon, it is assumed that the estimated coefficient of this variable captures the effect of the exemption policy on the utility of choosing to purchase an exempt LEV for these two groups of vehicle owners. The intra‐cordon residency indicator variable also controls for differences between the two groups, based upon direction of travel across the cordon boundary. A counter‐hypothesis to this assumption is that the coefficient of the variable representing commuting across the cordon boundary instead only captures geo‐demographic differences that lead to variations in LEV ownership across the different groups of vehicle owners in relation to the cordon boundary. In order to address this counter‐hypothesis, an additional analysis was performed on data from a city with a similar geodemographic pattern to Stockholm, Gothenburg ‐ Sweden’s second largest city. The results of this analysis provided evidence to support the argument that the coefficient of the variable representing commutes across the cordon was capturing the effect of the exemption policy. Based upon this framework, the predicted vehicle type shares were calculated using the estimated coefficients of the MNL model and compared with predicted vehicle type shares from a simulated scenario where the exemption policy was inactive. This simulated scenario was constructed by setting the coefficient for the variable representing commutes across the cordon boundary to zero for all observations to remove the utility benefit of the exemption policy. Overall, the procedure of this second stage of the analysis led to results showing that the exemption had a substantial effect upon the probability of purchasing and aggregate demand for exempt LEVs in Stockholm during 2008. By making use of unique evidence of revealed preferences of LEV owners, this study identifies the common characteristics of new LEV owners and estimates the effect of Stockholm's congestion charging exemption upon the demand for new LEVs during 2008. It was found that the variables that had the greatest effect upon the choice of purchasing an exempt LEV included intra‐cordon residency (positive), distance of home from the cordon (negative), and commuting across the cordon (positive). It was also determined that owners under the age of 30 years preferred non‐exempt LEVs (low CO2 LEVs), whilst those over the age of 30 years preferred electric vehicles. In terms of electric vehicles, it was apparent that those individuals living within the city had the highest propensity towards purchasing this vehicle type. A negative relationship between choosing an electric vehicle and the distance of an individuals’ residency from the cordon was also evident. Overall, the congestion charging exemption was found to have increased the share of exempt LEVs in Stockholm by 1.9%, with, as expected, a much stronger effect on those commuting across the boundary, with those living inside the cordon having a 13.1% increase, and those owners living outside the cordon having a 5.0% increase. This increase in demand corresponded to an additional 538 (+/‐ 93; 95% C.I.) new exempt LEVs purchased in Stockholm during 2008 (out of a total of 5 427; 9.9%). Policy makers can take note that an incentive‐based policy can increase the demand for LEVs and appears to be an appropriate approach to adopt when attempting to reduce transport emissions through encouraging a transition towards a ‘green’ vehicle fleet.