845 resultados para Cellulose Composites
Resumo:
Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10(-4) Ohm cm, 8.08 cm(2)/V-s and -1.5 x 10(21) cm(-3), respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO(2) thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m(2) as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, is presented an economical and technical feasibility study of a combined cycle cogeneration system proposed to be used in a pulp plant located in Brazil, where around 95% of country's pulp production is done by the use of Kraft Process. This process allows the use of black liquor and other by-products as fuel. This study is based upon actual data from a pulp plant with a daily production of 1000 tons., that generates part of the energy demanded by the process in a conventional cogeneration system with condensing steam turbine and two extractions. The addition of a gas turbine was studied to compare electricity production level and its related costs between original system and the new one, considering that the former can use industrial by-products and firewood as fuel, when required. Several parameters related to electric generation systems operation and production costs were studied. The use of natural gas in the combined cycle, in comparison with the use of firewood in the conventional system was studied. The advantages of natural gas fuel are highlighted. The surplus availability and the electricity generation costs are presented as a function of pulp and black liquor production.
Resumo:
Thermoeconomic Functional Analysis is a method developed for the analysis and optimal design of improvement of thermal systems (Frangopoulos, 1984). The purpose of this work is to discuss the cogeneration system optimization using a condensing steam turbine with two extractions. This cogeneration system is a rational alternative in pulp and paper plants in regard to the Brazilian conditions. The objective of this optimization consists of minimizing the global cost of the system acquisition and operation, based on the parametrization of actual data from a cellulose plant with a daily production of 1000 tons. Among the several possible decision variables, the pressure and temperature of live steam were selected. These variables significantly affect the energy performance of the cogeneration system. The conditions which determine a lower cost for the system are presented in conclusion.
Resumo:
Leucocoprinus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens rubropilosa, is able to degrade efficiently cellulose, microcrystaline cellulose, carboximethylcellulose, and cellobiose. Analysis of the degradation products indicate that the fungus produce extracellular β-glucosidase, exo- and endo-glucanase. The importance of cellulose degradation to the association of fungus and ant is discussed.
Resumo:
The purpose of this paper is to characterize the lability/inertness metal fractions complexed by aquatic humic substances (HS) in relation to pH, complexation time, and HS concentration. HS were preconcentrated by ultrafiltration and complexed with bivalent metal ions. These fractions were characterized by ion exchange with the chelating collector cellulose Hyphan by applying batch procedure. The metals were determined by atomic absorption spectrometry. The results show that the distribution coefficients, Kd, decreased with HS presence, and that the relative lability of metal fractions complexed by HS is dependent on variables such as pH, complexation time, and HS concentration. Until c.a. 15 min, the metal change between aquatic HS and ion exchanger occurs following a 2 order reaction. Afterwards, the remaining metal fraction in the HS reacts following a 1st order reaction. For traces of metal ions bound to dissolved HS, the lability orderPb > Mn > Cd, Ni > Cu is revealed. ©1997 Soc. Bras. Química.
Resumo:
Cellulose phosphate (CELLPHOS) was studied as a collector for analytical preconcentration of traces of Cd(II), Cr(III), Cu(II) and Ni(II) from aqueous sample solution. It has been proved that using chromatographic columns packed with CELLPHOS for preconcentration and 1.0 mol 1 -1 HCl for elution the adsorbed analytes are quantitatively enriched. An enrichment factor of 20 (100 ml sample, 5 ml concentrate) was achieved by this separation procedure, which was applied to a series of water analyses (river, sea, bog water).
Resumo:
Measurements of 1H Nuclear Magnetic Resonance (NMR) relaxation times, Electron Paramagnetic Resonance (EPR) and AC Impedance Spectroscopy (IS) are reported for composites based on PEO8:LiClO4 and carbon black (CB), prepared by two methods: solvent and fusion processing. Three nuclear relaxation processes were identified for 1H nuclei: (i) belonging to the polymer chains in the amorphous phase, loosely bound to the CB particles, whose dynamics is almost the same as for unfilled polymer, (ii) belonging to the polymer chains which are tightly attached to the CB particles, and (iii) belonging to the crystalline phase in the loose polymer chain. The paramagnetic electronic susceptibility of the composite samples, measured by EPR, was interpreted by assuming a contribution of localized spin states that follow a Curie law, and a Pauli-like contribution of delocalized spins. A significant change of the EPR linewidth was observed at 40 K, which is the temperature where the Curie and Pauli susceptibilities equally contribute to the paramagnetic electronic susceptibility. The electrical properties are very sensitive to the preparation methods of the composites, which conditions the interaction between carbon particle-carbon particle and carbon particle-polymer chain. Classical statistic models to describe the conductivity in these media were not satisfactory. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Curauá fiber processing characterization has been performed throughout the different processing steps. Unsaturated polyester has been used as matrix in the production of curauá reinforced composite samples. Compression molding process has been used to prepare the samples. Tensile strength, impact resistance, flexural strength, Young's modulus and elongation at break have been accessed for curauá composites in comparison with fiberglass composites. Mechanical properties were found not to attend the company's internal standards specification. However, the work has shown some alternatives to solve these problems such as the modification of equipment characteristics and resin formulation, the necessity of incorporation of a higher content of fiber and the possibility of using a new type of filler. Copyright © 2000 Society of Automotive Engineers, Inc.
Resumo:
This work has been performed at Tapetes Sao Carlos-Brazil with the cooperation of the DaimlerChrysler Research Center Team in Ulm - Germany. The objective of the present paper is to report the results obtained with natural fiber reinforced unsaturated polyester (UP) composites, concerning surface quality measurements. The fibers that have been chosen for this work were sisal and curaua. The samples were produced by compression molding technique and afterwards submitted to three different tests, namely: a) thermal aging; b) water absorption and c) artificial weathering. The surface parameters measured before and after the tests were gloss, haze, short and long-waviness. The results have shown that after the tests there is a high loss of gloss, a high increase in haze, and a high increase in short and long-waviness as well. Curaua reinforced composites had a slightly better behavior when compared with sisal reinforced composites. The effect of the presence of filler and the addition of thermoplastic polyester (TP) on the material behavior has not been evidently detected. This result shows that the conventional technology/methods applied to UP-Fiberglass systems cannot be transferred to natural fibers without any modification. The fiber-matrix interaction and its response to the presence of additives must be fully understood before a successful processing route can be developed for painted natural fibers reinforced UP. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
Aluminum matrix composites are currently considered as promising materials for tribological applications in the automotive, aircraft and aerospace industries due to their great advantage of a high strength-to-weight ratio. A superior combination of surface and bulk mechanical properties can be attained if these composites are processed as functionally graded materials (FGM's). In this work, homogeneous aluminum based matrix composite, cast by gravity, and aluminum composites with functionally graded properties, obtained by centrifugal cast, are tested against nodular cast iron in a pin-on-disc tribometer. Three different volume fractions of SiC reinforcing particles in each FGM were considered in order to evaluate their friction and wear properties. The sliding experiments were conducted without lubrication, at room temperature, under a normal load of 5 N and constant sliding speed of 0.5 ms-1. The worn surfaces as well as the wear debris were characterized by SEM/EDS and by atomic force microscopy (AFM). The friction coefficient revealed a slightly decrease (from 0.60 to 0.50) when FGM's are involved in the contact instead of the homogeneous composite. Relatively low values of the wear coefficient were obtained for functionally graded aluminum matrix composites (≈10-6 mm3N-1 m-1), which exhibited superior wear resistance than the homogeneous composite and the opposing cast iron surface. Characterization of worn surfaces indicated that the combined effect of reinforcing particles as load bearing elements and the formation of protective adherent iron-rich tribolayers has a decisive role on the friction and wear properties of aluminum matrix composites.
Resumo:
This work shows the preparation and characterization of composites obtained by mixing natural rubber (NR) and carbon black (CB) in different percentages aiming suitable mechanical properties, processability and electrical conductivity for future applications as transducers in pressure sensors. The composites NR/CB are characterized through dc conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA) and stress-strain test. The electrical conductivity changed from 10-9 to 10 Sm-1 depending on the percentage of CB in the composite. Besides, it was found a linear (and reversible) dependence of the conductivity on the applied pressure in the range from 0 to 1.6 MPa for the sample 80/20 (NR/CB wt%).
Resumo:
Weight reduction and improved damage tolerance characteristics were the prime drivers to develop new family of materials for the aerospace/ aeronautical industry. Aiming this objective, a new lightweight Fiber/ Metal Laminate (FML) has been developed. The combination of metal and polymer composite laminates can create a synergistic effect on many properties. The mechanical properties of FML shows improvements over the properties of both aluminum alloys and composite materials individually. Due to their excellent properties, FML are being used as fuselage skin structures of the next generation commercial aircrafts. One of the advantages of FML when compared with conventional carbon fiber/epoxy composites is the low moisture absorption. The moisture absorption in FML composites is slower when compared with polymer composites, even under the relatively harsh conditions, due to the barrier of the aluminum outer layers. Due to this favorable atmosphere, recently big companies such as EMBRAER, Aerospatiale, Boing, Airbus, and so one, starting to work with this kind of materials as an alternative to save money and to guarantee the security of their aircrafts.
Resumo:
Aqueous dispersions of monoolein (MO) with a commercial hydrophobically modified ethyl hydroxyethyl cellulose ether (HMEHEC) have been investigated with respect to the morphologies of the liquid crystalline nanoparticles. Only very low proportions of HMEHEC are accepted in the cubic and lamellar phases of the monoolein-water system. Due to the broad variation of composition and size of the commercial polymer, no other single-phase regions were found in the quasi-ternary system. Interactions of MO with different fractions of the HMEHEC sample induced the formation of lamellar and reversed hexagonal phases, identified from SAXD, polarization microscopy, and cryogenic TEM examinations. In excess water (more than 90 wt %) coarse dispersions are formed more or less spontaneously, containing particles of cubic phase from a size visible by the naked eye to small particles observed by cryoTEM. At high polymer/MO ratios, vesicles were frequently observed, often oligo-lamellar with inter-lamellar connections. After homogenization of the coarse dispersions in a microfluidizer, the large particles disappeared, apparently replaced by smaller cubic particles, often with vesicular attachments on the surfaces, and by vesicles or vesicular particles with a disordered interior. At the largest polymer contents no proper cubic particles were found directly after homogenization but mainly single-walled defected vesicles with a peculiar edgy appearance. During storage for 2 weeks, the dispersed particles changed toward more well-shaped cubic particles, even in dispersions with the highest polymer contents. In some of the samples with low polymer/MO ratio, dispersed particles of the reversed hexagonal type were found. A few of the homogenized samples were freeze-dried and rehydrated. Particles of essentially the same types, but with a less well-developed cubic character, were found after this treatment. © 2007 American Chemical Society.
Resumo:
OBJECTIVE: This study evaluated the efficiency of repolishing, sealing with surface sealant, and the joining of both in decreasing the surface roughness of resin-based composites after a toothbrushing process. METHOD AND MATERIALS: Ten specimens of each composite (Alert, Z100, Definite, and Prodigy Condensable), measuring 2 mm in thickness and 4 mm in diameter, were made and submitted to finishing and polishing processes on both sides of the specimens using the Sof-Lex system. The specimens were then subjected to toothbrushing (30,000 cycles), and surface roughness (Ra) was analyzed with a Surfcorder SE 1700 profilometer. The upper surface of each composite was etched with 37% phosphoric acid, and the surface-penetrating sealant Protect-it was applied on 1 surface. The roughness of these surfaces was again measured. On the other side, the surface of the specimen was repolished, and the efficiency of this procedure was measured using the profilometer. The surface roughness resulting from the joining of the 2 methods was verified by applying, in the final stage, the surface-penetrating sealant on the repolished surface. Data were analyzed with analysis of variance and Tukey test (P <.05). RESULTS: Results showed that the lowest surface roughness values were obtained for Definite, Z100, and Prodigy Condensable after the repolishing process and after the repolishing plus sealing. For Alert, the joining of repolishing plus sealing promoted the lowest values of surface roughness. CONCLUSION: Of the resin-based composites, Alert demonstrated the highest values of surface roughness in all the techniques tested.
Resumo:
This study sought to investigate the surface roughness and the adherence of Streptococcus mutans (in the presence and absence of saliva) to ceramics and composites. The early dental biofilms formed in situ on the materials were illustrated, using scanning electron microscopy (SEM). Feldspathic and leucite/feldspathic ceramics and microhybrid and microfilled composites were evaluated. Human dental enamel was used as the control. Standardized specimens of the materials were produced and surface roughness was analyzed. The adhesion tests were carried out in 24-well plates and colony forming units (CFU/mL) were evaluated. Values of roughness (μm) and adherence (CFU/mL) were analyzed statistically. Of all the surfaces tested, enamel was the roughest. Leucite/feldspathic ceramics were rougher than the feldspathic ceramic, while composites were similar statistically. Enamel offered the highest level of adherence to uncoated and saliva-coated specimens, while the leucite/feldspathic ceramic demonstrated greater adherence than the feldspathic ceramic and the composites were similar statically. The rougher restorative materials increased the adherence of S, mutans on the material surfaces.