928 resultados para Cellular infiltration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hepatic microcirculation is believed to cause variable cellular oxygenation within the organ. In this study a marker of cellular hypoxia was used to demonstrate liver oxygen tension gradients in vivo. Covalent binding of misonidazole adducts to cellular macromolecules is enhanced by hypoxia. Autoradiographs of liver from mice treated with radiolabeled misonidazole demonstrated enhanced binding of adducts within hepatocytes surrounding hepatic veins. Livers from both hypoxic and normal mice had characteristic autoradiographic grain patterns reflecting regional oxygen tension variation in vivo. Differential binding of misonidazole adducts formed in hypoxic cells could have an application in studies of liver physiology and biochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric pressure non-thermal plasma (APNTP) has been gaining increasing interest as a new alternative antibacterial approach. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. Mechanistic elucidation of the antimicrobial activity will facilitate development and rational optimisation of this approach for potential medical applications. In this study, the antibacterial efficacy of an in-house-built APNTP jet was evaluated alongside an investigation of the interactions between APNTP and major cellular components in order to identify the potential cellular targets involved in plasma-mediated bacterial destruction mechanisms. The investigated plasma jet exhibited excellent, rapid antibacterial activity against a selected panel of clinically significant bacterial species including Bacillus cereus, meticillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa, all of which were completely inactivated within 2 min of plasma exposure. Plasma-mediated damaging effects were observed, to varying degrees, on all of the investigated cellular components including DNA, a model protein enzyme, and lipid membrane integrity and permeability. The antibacterial efficacy of APNTP appears to involve a multiple-target mechanism, which potentially reduces the likelihood of emergence of microbial resistance towards this promising antimicrobial approach. However, cellular membrane damage and resulting permeability perturbation was found to be the most likely rate-determining step in this mechanism. Crown Copyright © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence indicate that the adapter molecule p130CAS (crk-associated substrate (CAS)) is required for src-mediated cellular transformation. CAS has been shown to be heavily tyrosine-phosphorylated in src-transformed cells, and genetic variants of src that are deficient in CAS binding are also unable to mediate cellular transformation. In this report, we investigated whether CAS phosphorylation and/or its association with src are required elements of the transformation process. Expression of the carboxy-terminal src binding domain of CAS in Rat 1 fibroblasts expressing a temperature-sensitive allele of v-src inhibited the formation of src-CAS complexes and also inhibited tyrosine phosphorylation of CAS. However, expression of this protein had no effect on morphological transformation, src-mediated actin rearrangements, or anchorage-independent growth of these cells when grown at the src-permissive temperature. Thus, the ability of activated src to mediate cellular transformation is either largely independent of endogenous CAS phosphorylation and/or its association with CAS or, alternatively, the carboxy-terminus of CAS may substitute for endogenous CAS in the process of src-mediated transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptor proteins play an important role in signal transduction by regulating the establishment and maintenance of functionally important protein complexes. A recently described member of this group of proteins is p130cas (CAS), which contains numerous sequence motifs predicted to be involved in mediating protein-protein interactions. We propose that adaptor molecules like CAS may help determine the response of a cell to a particular signal by interacting with specific subsets of cellular proteins. To test this hypothesis, we have identified potential binding partners of CAS that may play a rote in cellular transformation by the oncoproteins v-SRC and/or v-CRK. We show that individual domains of CAS associate with specific subsets of proteins in vitro, and that many of these interactions are dependent on the state of tyrosine-phosphorylation of CAS. Sequences necessary for interacting with the focal adhesion kinase pp125FAK (FAK), v-SRC and v-CRK have been mapped to distinct regions of CAS. In addition, the identification of a number of putative CAS-binding partners that are present in crk-transformed cell extracts but undetectable in normal and src-transformed cell extracts supports a model in which unique protein complexes are formed in response to different signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grape-seed procyanidins (GSPE) modulate glucose homeostasis and it was suggested that GSPE may achieve this by enhancing the secretion of incretin hormones such as glucagon-like peptide-1 (GLP-1). Therefore, the aim of the present study is to examine in detail the effects of GSPE on intestinal endocrine cells (STC-1). GSPE was found to modulate plasma membrane potential in enteroendocrine cells, inducing depolarization at low concentrations (0.05 mg/L) and hyperpolarization at high concentrations (50 mg/L), and surprisingly this was also accompanied by suppressed GLP-1 secretion. Furthermore, how GSPE affects STC-1 cells under nutrient-stimulated conditions (i.e. glucose, linoleic acid and L-proline) was also explored, and we found that the higher GSPE concentration was effective in limiting membrane depolarization and reducing GLP-1 secretion. Next, it was also examined whether GSPE affected mitochondrial membrane potential, finding that this too is altered by GSPE, however this does not appear to explain the observed effects on plasma membrane potential and GLP-1 secretion. In conclusion, our results show that grape-seed procyanidins modulate cellular membrane potential and nutrient-induced enteroendocrine hormone secretion in STC-1 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: RAGE regulates pro-inflammatory responses in diverse cells and tissues. This study has investigated if RAGE plays a role in immune cell mobilization and choroidal neovascular pathology that is associated with the neovascular form of age-related macular degeneration (nvAMD).

Methods: RAGE null (RAGE−/−) mice and age-matched wild type (WT) control mice underwent laser photocoagulation to generate choroidal neovascularization (CNV) lesions which were then analyzed for morphology, S100B immunoreactivity and inflammatory cell infiltration. The chemotactic ability of bone marrow derived macrophages (BMDMs) towards S100B was investigated.

Results: RAGE expression was significantly increased in the retina during CNV of WT mice (p<0.001). RAGE−/− mice exhibited significantly reduced CNV lesion size when compared to WT controls (p<0.05). S100B mRNA was upregulated in the lasered WT retina but not RAGE−/− retina and S100B immunoreactivity was present within CNV lesions although levels were less when RAGE−/− mice were compared to WT controls. Activated microglia in lesions were considerably less abundant in RAGE−/− mice when compared to WT counterparts (p<0.001). A dose dependent chemotactic migration was observed in BMDMs from WT mice (p<0.05–0.01) but this was not apparent in cells isolated from RAGE−/− mice.

Conclusions: RAGE-S100B interactions appear to play an important role in CNV lesion formation by regulating pro-inflammatory and angiogenic responses. This study highlights the role of RAGE in inflammation-mediated outer retinal pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite considerable advances in reducing the production of dioxin-like toxicants in recent years, contamination of the food chain still occasionally occurs resulting in huge losses to the agri-food sector and risk to human health through exposure. Dioxin-like toxicity is exhibited by a range of stable and bioaccumulative compounds including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), produced by certain types of combustion, and man-made coplanar polychlorinated biphenyls (PCBs), as found in electrical transformer oils. While dioxinergic compounds act by a common mode of action making exposure detection biomarker based techniques a potentially useful tool, the influence of co-contaminating toxicants on such approaches needs to be considered. To assess the impact of possible interactions, the biological responses of H4IIE cells to challenge by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in combination with PCB-52 and benzo-a-pyrene (BaP) were evaluated by a number of methods in this study. Ethoxyresorufin-O-deethylase (EROD) induction in TCDD exposed cells was suppressed by increasing concentrations of PCB-52, PCB-153, or BaP up to 10 mu M. BaP levels below 1 mu M suppressed TCDD stimulated EROD induction, but at higher concentrations, EROD induction was greater than the maximum observed when cells were treated with TCDD alone. A similar biphasic interaction of BaP with TCDD co-exposure was noted in the AlamarBlue assay and to a lesser extent with PCB-52. Surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) profiling of peptidomic responses of cells exposed to compound combinations was compared. Cells co-exposed to TCDD in the presence of BaP or PCB-52 produced the most differentiated spectra with a substantial number of non-additive interactions observed. These findings suggest that interactions between dioxin and other toxicants create novel, additive, and non-additive effects, which may be more indicative of the types of responses seen in exposed animals than those of single exposures to the individual compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes millimeter wave (mmWave) mobile broadband for achieving secure communication in downlink cellular network. Analog beamforming with phase shifters is adopted for the mmWave transmission. The secrecy throughput is analyzed based on two different transmission modes, namely delay-tolerant transmission and delay-limited transmission. The impact of large antenna arrays at the mmWave frequencies on the secrecy throughput is examined. Numerical results corroborate our analysis and show that mmWave systems can enable significant secrecy improvement. Moreover, it is indicated that with large antenna arrays, multi-gigabit per second secure link at the mmWave frequencies can be reached in the delay-tolerant transmission mode and the adverse effect of secrecy outage vanishes in the delay-limited transmission mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We test the hypothesis that anesthesia, measured as pain scores, induced by a novel topical anesthetic putty is non-inferior (margin=1.3) to that provided by conventional lidocaine infiltration for the repair of lacerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using device-to-device communications as an underlay for cellular communications will provide an exciting opportunity to increase network capacity as well as improving spectral efficiency. The unique geometry of device-to-device links, where user equipment is often held or carried at low elevation and in close proximity to the human body, will mean that they are particularly susceptible to shadowing events caused not only by the local environment but also by the user's body. In this paper, the shadowed κ - μ fading model is proposed, which is capable of characterizing shadowed fading in wireless communication channels. In this model, the statistics of the received signal are manifested by the clustering of multipath components. Within each of these clusters, a dominant signal component with arbitrary power may exist. The resultant dominant signal component, which is formed by the phasor addition of these leading contributions, is assumed to follow a Nakagami- m distribution. The probability density function, moments, and the moment-generating function are also derived. The new model is then applied to device-to-device links operating at 868 MHz in an outdoor urban environment. It was found that shadowing of the resultant dominant component can vary significantly depending upon the position of the user equipment relative to the body and the link geometry. Overall, the shadowed κ - μ fading model is shown to provide a good fit to the field data as well as providing a useful insight into the characteristics of the received signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored.

Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions.

Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred.

Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy.