955 resultados para Cell-derived Factor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Myc proto-oncoproteins are transcription factors that recognize numerous target genes through hexameric DNA sequences called E-boxes. The mechanism by which they then activate the expression of these targets is still under debate. Here, we use an RNAi screen in Drosophila S2 cells to identify Drosophila host cell factor (dHCF) as a novel co-factor for Myc that is functionally required for the activation of a Myc-dependent reporter construct. dHCF is also essential for the full activation of endogenous Myc target genes in S2 cells, and for the ability of Myc to promote growth in vivo. Myc and dHCF physically interact, and they colocalize on common target genes. Furthermore, down-regulation of dHCF-associated histone acetyltransferase and histone methyltransferase complexes in vivo interferes with the Myc biological activities. We therefore propose that dHCF recruits such chromatin-modifying complexes and thereby contributes to the expression of Myc targets and hence to the execution of Myc biological activities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SUMMARY : Ewing's sarcoma is a member of Ewing's family tumors (ESPY) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWSR1 gene with the 3' segment of the ETS family gene FLI-1. The EWSR1-FLI-1 fusion protein behaves as an aberrant transcriptional activator and is believed to contribute to ESFT development. However, EWSR1-FLI-1 induces growth arrest and apoptosis in normal fibroblasts, and primary cells that are pemissive for its putative oncogenic properties have not been discovered, hampering basic understanding of ESFT biology. Here, we show that EWSR1-FLI-1 alone can transform mouse primary bone marrow-derived mesenchymal progenitor cells and generate tumors that display hallmarks of Ewing's sarcoma, including a small round cell phenotype, expression of ESFT-associated markers, insulin like growth factor-I dependence, and induction or repression of numerous EWSR1-FLI-1 target genes. Consistent with this finding, we tested the possibility that human mesenchymal stem cells (hMSC) might also provide a permissive cellular environment for EWSR1-FLI-1, and could represent the first adequate primary human cellular background for the oncogenic properties of the fusion protein. Indeed, expression of EWSR1-FLI-1 in human mesenchymal stem cells (hMSC) was not only stably maintained without inhibiting proliferation, but induced a gene expression profile bearing striking similarity to that of ESFT, including genes that are among the highest ESFT discriminators. Expression of EWSR1-FLI-1 in hMSCs may recapitulate the initial steps of Ewing's sarcoma development, allowing identification of genes that play an important role early in its pathogenesis. Among relevant candidate transcripts induced by EWSR1-FL/-1 in hMSC we found the polycomb group gene EZH2 which we show to play a critical role in Ewing's sarcoma growth. These observations provide the first identification of candidate primary cells from which ESFTs originate and suggest that EWSR1-FLI-1 expression may constitute the initiating event in ESFT pathogenesis. Le sarcome d' Ewing est un membre de la famille des tumeurs Ewing (ESFT) et représente la deuxième tumeur maligne solide de l'os et des tissus mous chez les enfants et les jeunes adultes. Cette tumeur est associée dans 85% des cas avec la translocation chromosomique t(11;22)(g24:g12), qui génère la fusion entre le segment 5' du gène EWSR1 avec le segment 3' du gène FLI-1, appartenant à la famille des facteurs de transcription ETS. La protéine de fusion EWSR1-FLI-1 qui en dérive joue le rSle d'un facteur de transcription aberrant, et est supposée contribuer de manière décisive au processus de développement des ESFTs. Néanmoins, l'expression de EWSR1-FLI-1 dans des fibroblastes normaux induit un arrêt de croissance et leur apoptose, et les cellules primaires permissives pour les propriétés oncogéniques attribuées à la translocation n'ont pas encore été identifiées, empêchant la compréhension de la biologie de base du sarcome d'Ewing. Dans ce travail on montre que l'expression de EWSR1-FLI-1 uniquement est capable de transformer des cellules souches mésenchymateuses dérivées de la moelle osseuse de la souris, pour générer des tumeurs qui présentent les caractéristiques du sarcome d' Ewing humain, et notamment une morphologie de petites cellules bleues et rondes, l'expression de marqueurs associés aux ESFTs, une dépendance du facteur de croissance IGF-1, et l'induction ou la répression de nombreux gènes cibles connus de EWSR1-FLI-1. Sur la base de ces observations, on a testé la possibilité que les cellules souches mésenchymateuses humaines (hMSCs) puissent aussi fournir un environnement cellulaire permissif pour EWSR1-FLI-1 ; et représenter le premier background cellulaire humain adéquat pour la manifestation du pouvoir oncogénique de la protéine de fusion. En effet, l'expression de EWSR1-FLI-1 dans des cellules souches mésenchymateuses humaines s'est révélée non seulement maintenue, mais elle a induit un profil d'expression génétique étonnamment similaire à celui des ESFTs humains, incluant les gènes qui ont été rapportés comme étant les plus discriminatifs pour ces tumeurs. L'expression de EWSR1-FLI-1 dans les hMSCs pourrait récapituler les étapes initiales du développement du sarcome d' Ewing, et de ce fait consentir à identifier les gènes qui jouent un rôle crucial dans sa pathogenèse précoce. Parmi les transcrits relevant indults par EWSR1-FL/-9 dans les hMSCs nous avons découvert le gène du groupe des polycomb EZH2, que nous avons par la suite démontré jouer un rôle essentiel dans la croissance du sarcome de Ewing. Ces observations apportent pour la première fois l'identification d'une cellule primaire candidate pour représenter la cellule d'origine des ESFTs, et en même temps suggèrent que l'expression de EWSR1-FLI-1 peut constituer l'événement initial dans la pathogenèse du sarcome d' Ewing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ewing's sarcoma is a member of Ewing's family tumors (EFTs) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWS gene with the 3' segment of the ETS family gene FLI-1. The EWS-FLI-1 fusion protein behaves as an aberrant transcriptional activator and is believed to contribute to EFT development. However, EWS-FLI-1 induces growth arrest and apoptosis in normal fibroblasts, and primary cells that are permissive for its putative oncogenic properties have not been discovered, hampering basic understanding of EFT biology. Here, we show that EWS-FLI-1 alone can transform primary bone marrow-derived mesenchymal progenitor cells and generate tumors that display hallmarks of Ewing's sarcoma, including a small round cell phenotype, expression of EFT-associated markers, insulin like growth factor-I dependence, and induction or repression of numerous EWS-FLI-1 target genes. These observations provide the first identification of candidate primary cells from which EFTs originate and suggest that EWS-FLI-1 expression may constitute the initiating event in EFT pathogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Intracoronary injection of autologous bone marrow-derived mononucleated cells (BM-MNC) may improve LV function shortly after acute ST elevation myocardial infarction (STEMI), but little is known about the long-term durability of the treatment effect. METHODS: In a single-centre trial a total of 60 patients with acute anterior STEMI, successful reperfusion therapy and a left ventricular ejection fraction (LVEF) of <50% were screened for the study. 23 patients were actively treated with intracoronary infusion of BM-MNC within a median of 3 days. The open-label control group consisted of 19 patients who did not consent to undergo BM-MNC treatment but agreed to undergo regular clinical and echocardiographic follow-up for up to 5 years after AMI. RESULTS: Whereas at 4 months there was no significant difference between the increase in LVEF in the BM-MNC group and the control group (+7.0%, 95%CI 3.6; 10.4) vs. +3.9%, 95%CI -2.1; 10), the absolute increase at 5 years remained stable in the BM-MNC but not in the control group (+7.95%, 95%CI 3.5; 12.4 vs. -0.5%, 95%CI -5.4; 4.4; p for interaction between groups = 0.035). DISCUSSION: In this single-centre, open-labelled study, intracoronary administration of BM-MNC is feasible and safe in the short term. It is also associated with sustained improvement of left ventricular function in patients with acute myocardial infarction, encouraging phase III studies to examine the potential BM-MNC effect on clinical outcome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We determined NGF involvement in MMCs and colonic motor alterations in an ovalbumin (OVA)-induced gut dysfunction model in rats. Animals received OVA (6 weeks), with/without simultaneous K252a (TrkA antagonist) treatment. MMCs, rat mast cell protease II (RMCPII) levels and colonic contractility in vitro were assessed. OVA increased MMC density and RMCPII concentration. Spontaneous contractility was similar in both groups and inhibited by K252a. Carbachol responses were increased by OVA in a K252a-independent manner. NO-synthase inhibition increased spontaneous activity in OVA-treated animals in a K252a-dependent manner. These observations support an involvement of NGF in the functional changes observed in this model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-a and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-a concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure. [Authors]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MCT2 is the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate. It is suggested that MCT2 is upregulated to meet enhanced energy demands after modifications in synaptic transmission. Brain-derived neurotrophic factor (BDNF), a promoter of synaptic plasticity, significantly increased MCT2 protein expression in cultured cortical neurons (as shown by immunocytochemistry and western blot) through a translational regulation at the synaptic level. Brain-derived neurotrophic factor can cause translational activation through different signaling pathways. Western blot analyses showed that p44/p42 mitogen-activated protein kinase (MAPK), Akt, and S6 were strongly phosphorylated on BDNF treatment. To determine by which signal transduction pathway(s) BDNF mediates its upregulation of MCT2 protein expression, the effect of specific inhibitors for p38 MAPK, phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), p44/p42 MAPK (ERK), and Janus kinase 2 (JAK2) was evaluated. It could be observed that the BDNF-induced increase in MCT2 protein expression was almost completely blocked by all inhibitors, except for JAK2. These data indicate that BDNF induces an increase in neuronal MCT2 protein expression by a mechanism involving a concomitant stimulation of PI3K/Akt/mTOR/S6, p38 MAPK, and p44/p42 MAPK. Moreover, our observations suggest that changes in MCT2 expression could participate in the process of synaptic plasticity induced by BDNF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PSIP1 (PC4 and SFRS1 interacting protein 1) encodes two splice variants: lens epithelium-derived growth factor or p75 (LEDGF/p75) and p52. PSIP1 gene products were shown to be involved in transcriptional regulation, affecting a plethora of cellular processes, including cell proliferation, cell survival, and stress response. Furthermore, LEDGF/p75 has implications for various diseases and infections, including autoimmunity, leukemia, embryo development, psoriasis, and human immunodeficiency virus integration. Here, we reported the first characterization of the PSIP1 promoter. Using 5' RNA ligase-mediated rapid amplification of cDNA ends, we identified novel transcription start sites in different cell types. Using a luciferase reporter system, we identified regulatory elements controlling the expression of LEDGF/p75 and p52. These include (i) minimal promoters (-112/+59 and +609/+781) that drive the basal expression of LEDGF/p75 and of the shorter splice variant p52, respectively; (ii) a sequence (+319/+397) that may control the ratio of LEDGF/p75 expression to p52 expression; and (iii) a strong enhancer (-320/-207) implicated in the modulation of LEDGF/p75 transcriptional activity. Computational, biochemical, and genetic approaches enabled us to identify the transcription factor Sp1 as a key modulator of the PSIP1 promoter, controlling LEDGF/p75 transcription through two binding sites at -72/-64 and -46/-36. Overall, our results provide initial data concerning LEDGF/p75 promoter regulation, giving new insights to further understand its biological function and opening the door for new therapeutic strategies in which LEDGF/p75 is involved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aggregating cell cultures prepared from fetal rat telencephalon express the two subunits [cerebellar soluble lectins (CSL) 1 and 2] of a soluble, mannose-specific endogenous lectin (CSL) in a development-dependent manner. Increased CSL synthesis was found at an early postmitotic stage as well as during the period of maximal myelination. Repetitive treatment of early cultures with epidermal growth factor (EGF, 3nM) caused a great stimulation of CSL biosynthesis. Immunocytochemical studies revealed particularly intense CSL-specific staining in small, EGF-responsive cells, presumably glial cells. Large quantities of CSL-immunoreactive material were found also in the extracellular space and on the external side of the plasma membrane, indicating abundant release of CSL. The present findings suggest that EGF or EGF-related factors in the brain are able to regulate the expression of an endogenous lectin, affecting brain ontogeny.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Food allergy is a common allergic disorder--especially in early childhood. The avoidance of the allergenic food is the only available method to prevent further reactions in sensitized patients. A better understanding of the immunologic mechanisms involved in this reaction would help to develop therapeutic approaches applicable to the prevention of food allergy. OBJECTIVE: To establish a multi-cell in vitro model of sensitized intestinal epithelium that mimics the intestinal epithelial barrier to study the capacity of probiotic microorganisms to modulate permeability, translocation and immunoreactivity of ovalbumin (OVA) used as a model antigen. METHODS: Polarized Caco-2 cell monolayers were conditioned by basolateral basophils and used to examine apical to basolateral transport of OVA by ELISA. Activation of basophils with translocated OVA was measured by beta-hexosaminidase release assay. This experimental setting was used to assess how microorganisms added apically affected these parameters. Basolateral secretion of cytokine/chemokines by polarized Caco-2 cell monolayers was analysed by ELISA. RESULTS: Basophils loaded with OVA-specific IgE responded to OVA in a dose-dependent manner. OVA transported across polarized Caco-2 cell monolayers was found to trigger basolateral basophil activation. Microorganisms including lactobacilli and Escherichia coli increased transepithelial electrical resistance while promoting OVA passage capable to trigger basophil activation. Non-inflammatory levels of IL-8 and thymic stromal lymphopoietin were produced basolaterally by Caco-2 cells exposed to microorganisms. CONCLUSION: The complex model designed in here is adequate to learn about the consequence of the interaction between microorganisms and epithelial cells vis-a-vis the barrier function and antigen translocation, two parameters essential to mucosal homeostasis. It can further serve as a direct tool to search for microorganisms with anti-allergic and anti-inflammatory properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work describes the in vitro infection of a cell line Lulo, derived from Lutzomyia longipalpis embryonic tissue, by Leishmania chagasi promastigotes. This infection process is compared with a parallel one developed using the J774 cell line. The L. chagasi MH/CO/84/CI-044B strain was used for experimental infection in two cell lines. The cells were seeded on glass coverslips in 24-well plates to reach a final number of 2 x 10(5) cells/well. Parasites were added to the adhered Lulo and J774 cells in a 10:1 ratio and were incubated at 28 and 37ºC respectively. After 2, 4, 6, 8, and 10 days post-infection, the cells were extensively washed with PBS, fixed with methanol, and stained with Giemsa. The number of internalized parasites was determined by counting at least 400 cultured cells on each coverslip. The results showed continuous interaction between L. chagasi promastigotes with the cell lines. Some ultrastructural characteristics of the amastigote forms were observed using transmission electron microscopy. The highest percentage of infection in Lulo cells was registered on day 6 post-infection (29.6%) and on day 4 in the J774 cells (51%). This work shows similarities and differences in the L. chagasi experimental infection process in the two cell lines. However, Lulo cells emerge as a new model to study the life-cycle of this parasite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Remyelination can be studied in aggregating rat brain cell cultures after limited demyelination. Demyelination was induced using a monoclonal antibody against myelin/oligodendrocyte glycoprotein (MOG mAb), in the presence of complement. De- and remyelination were assessed by measuring myelin basic protein (MBP). Two days after removing the MOG mAb, MBP levels reached 50% of controls and after 7 days 93%. During this period, cell proliferation determined by [14C]thymidine incorporation was similar in remyelinating and control cultures. Hormones and growth factors were tested for possible stimulatory effect on remyelinating cultures. Bovine growth hormone (bGH), triiodothyronine (T3), basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) did not improve remyelination. Only epidermal growth factor (EGF) increased the level of remyelination. PDGF increased the rate of cell proliferation in both control and remyelinating cultures. A significant proportion of oligodendrocytes entered the cell division cycle and were not available for remyelination. The results obtained with PDGF and FGF (inhibition) support the idea that a pool of progenitor cells was still present and able to proliferate and differentiate into myelinating oligodendrocytes. The levels of myelin protein mRNAs were investigated during de- and remyelination. During demyelination, myelin protein mRNA levels decreased to approximately 50% of control cultures and returned to normal during remyelination. These preliminary results indicate that normal levels of gene transcription are sufficient to meet the increased need for newly synthesized myelin proteins during remyelination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of orally active small molecule inhibitors of the epidermal growth factor receptor (EGFR) has led to new treatment options for non-small cell lung cancer (NSCLC). Patients with activating mutations of the EGFR gene show sensitivity to, and clinical benefit from, treatment with EGFR tyrosine kinase inhibitors (EGFR-TKls). First generation reversible ATP-competitive EGFR-TKls, gefitinib and erlotinib, are effective as first, second-line or maintenance therapy. Despite initial benefit, most patients develop resistance within a year, 50-60% of cases being related to the appearance of a T790M gatekeeper mutation. Newer, irreversible EGFR-TKls - afatinib and dacomitinib - covalently bind to and inhibit multiple receptors in the ErbB family (EGFR, HER2 and HER4). These agents have been mainly evaluated for first-line treatment but also in the setting of acquired resistance to first-generation EGFR-TKls. Afatinib is the first ErbB family blocker approved for patients with NSCLC with activating EGFR mutations; dacomitinib is in late stage clinical development. Mutant-selective EGFR inhibitors (AZD9291, CO-1686, HM61713) that specifically target the T790M resistance mutation are in early development. The EGFR-TKIs differ in their spectrum of target kinases, reversibility of binding to EGFR receptor, pharmacokinetics and potential for drug-drug interactions, as discussed in this review. For the clinician, these differences are relevant in the setting of polymedicated patients with NSCLC, as well as from the perspective of innovative anticancer drug combination strategies.