881 resultados para Cadeias de Markov. Algoritmos genéticos
Resumo:
2010
Resumo:
This report studies when and why two Hidden Markov Models (HMMs) may represent the same stochastic process. HMMs are characterized in terms of equivalence classes whose elements represent identical stochastic processes. This characterization yields polynomial time algorithms to detect equivalent HMMs. We also find fast algorithms to reduce HMMs to essentially unique and minimal canonical representations. The reduction to a canonical form leads to the definition of 'Generalized Markov Models' which are essentially HMMs without the positivity constraint on their parameters. We discuss how this generalization can yield more parsimonious representations of stochastic processes at the cost of the probabilistic interpretation of the model parameters.
Resumo:
1985
Resumo:
Para muitos usuários, a programação visual é uma alternativa atrativa às linguagens de programação textuais. Uma das razões para esta atração é que a representação visual de um problema está muito mais próxima com a forma pela qual a solução é obtida ou entendida se comparada à representação textual. Este trabalho apresenta um modelo para a programação visual de matrizes baseado nos paradigmas de fluxo de dados e planilhas eletrônicas. O fluxo de dados e a planilha forma a base semântica da linguagem, enquanto as representações gráficas do grafo direcionado e de uma planilha fundamentam sua base sintática. Este modelo consiste em um conjunto de diagramas bidimensionais e de regras de transformação. Os processos são implementados como redes de fluxo de dados e os dados são representados por planilhas. As planilhas podem ser vistas como variáveis do tipo matriz que armazenam dados bidimensionais, ou como funções, que recebem e produzem valores utilizados por outros processos. Neste caso, as planilhas são programadas seguindo o paradigma de programação por demonstrações que incorporam um poderoso construtor de interação, reduzindo significativamente a utilização de recursos e repetições. O modelo proposto pode ser utilizado em diversos domínios de aplicação, principalmente para simplificar a construção de modelos matemáticos de simulação e análise estatística.
Resumo:
O projeto Análise de Redes com Sistemas de Informações Geográficas - ARSIG, tem como uma de suas metas a especialização de soluções de roteamento de veículos em uma dada área (rural ou urbana).
Resumo:
2008
Resumo:
2008
Resumo:
Resgate da memória da Embrapa Recursos Genéticos e Biotecnologia.
Resumo:
RESUMO: O objetivo deste trabalho foi estimar caracteres genéticos, fenotípicos e ambientais relacionados aos componentes de produção e caracteres agromorfológicos de girassol em três núcleos rurais do Distrito Federal. Os experimentos foram conduzidos nas áreas experimentais da Embrapa Cerrados, Planaltina, DF, Embrapa Produtos e Mercado, Recanto das Emas, DF e na Fazenda Agua Limpa, da Universidade de Brasília. Através dos resultados obtidos, foram verificadas diferenças significativas entre os genótipos de girassol nos três núcleos rurais do Cerrado para todas as características agronômicas avaliadas. Ainda, baixos coeficientes de variação ambiental para quase todas as características, exceto para o tamanho de capitulo, indicaram boa precisão experimental e altos valores de herdabilidade, coeficientes de variação genéticos e acurácia evidenciaram condições favoráveis à seleção dos materiais para as características agronômicas avaliadas. ABSTRACT: The purpose of this study was to assess genetic, phenotypic and environmental characteristics related to agro-morphological traits of sunflower in three rural centers of Distrito Federal. The experiments were conducted at the experimental areas of Embrapa Cerrados, Planaltina, DF, Embrapa Produtos e Mercado, Recanto das Emas, DF e na Fazenda Agua Limpa, da Universidade de Brasília. Through the obtained results, were verified significate genotypic differences of sunflower at the three rural centers of Brazilian Savannah for all traits evaluated. In addition, low coefficients of environmental variation for almost all trait, except the head size, indicate good experimental precision and high values of heritability, genetic variation and accuracy showed favorable conditions to selecting materials for the agronomic traits evaluated.
Resumo:
F. Smith and Q. Shen. Fault identification through the combination of symbolic conflict recognition and Markov Chain-aided belief revision. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34(5):649-663, 2004.
Resumo:
info:eu-repo/semantics/published
Resumo:
Los modelos 'modelos animales con efectos maternos' (MAM) son modelos lineales mixtos que se utilizan para ajustar registros de caracteres bajo la influencia de efectos maternos. Uno de los desafíos más importantes en el marco de los MAM es la estimación de los parámetros de dispersión o 'componentes de (co) varianza' (CVC). En esta tesis se introducen desde una perspectiva bayesiana contribuciones teóricas y metodológicas con relación a la estimación de CVC para MAM sujetos a estructuras de covarianza novedosas. En primer lugar, se describe una implementación del análisis bayesiano jerárquico vía el algoritmo del muestreo de Gibbs. Luego, se considera una especificación conjugada diferente para la distribución a priori de la matriz de covarianza genética, basada en la distribución Wishart invertida generalizada, y se presenta una estrategia para determinar los correspondientes hiperparámetros. Esta estrategia fue comparada contra otras especificaciones a priori mediante un estudio de simulación estocástica, y produjo estimaciones precisas de los parámetros genéticos, con menores errores estándares y mejor tasa de convergencia. En segundo lugar, se presenta una formulación alternativa del MAM que incluye un parámetro de correlación ambiental entre pares de observaciones madre-progenie, y se desarrolla un procedimiento de estimación basado en un algoritmo de muestreo por grilla. El procedimiento fue programado y ejecutado exitosamente, y se obtuvo la primera estimación del parámetro de correlación con datos de campo para peso al destete en bovinos de carne. Por último, se considera el problema de la estimación de CVC en una población multirracial, donde en general es necesario especificar una estructura de covarianza heterogénea para los valores de cría. En particular, se demuestra que el modelo basado en la descomposición de la matriz de covarianza genética es equivalente al que deriva de la teoría genética cuantitativa. Además, se extiende el modelo para incluir efectos maternos y se describe la implementación de un análisis bayesiano jerárquico con el objetivo de estimar los CVC. El procedimiento fue implementado con éxito en datos experimentales de peso al destete y se obtuvieron por primera vez estimaciones para el conjunto completo de CVC.
Resumo:
p.21-27
Resumo:
Los modelos 'modelos animales con efectos maternos' (MAM)son modelos lineales mixtos que se utilizan para ajustar registros de caracteres bajo la influencia de efectos maternos. Uno de los desafíos más importantes en el marco de los MAM es la estimación de los parámetros de dispersión o 'componentes de (co)varianza' (CVC). En esta tesis se introducen desde una perspectiva bayesiana contribuciones teóricas y metodológicas con relación a la estimación de CVC para MAM sujetos a estructuras de covarianza novedosas. En primer lugar, se describe una implementación del análisis bayesiano jerárquico vía el algoritmo del muestreo de Gibbs. Luego, se considera una especificación conjugada diferente para la distribución a priori de la matriz de covarianza genética, basada en la distribución Wishart invertida generalizada, y se presenta una estrategia para determinar los correspondientes hiperparámetros. Esta estrategia fue comparada contra otras especificaciones a priori mediante un estudio de simulación estocástica, y produjo estimaciones precisas de los parámetros genéticos, con menores errores estándares y mejor tasa de convergencia. En segundo lugar, se presenta una formulación alternativa del MAM que incluye un parámetro de correlación ambiental entre pares de observaciones madre-progenie, y se desarrolla un procedimiento de estimación basado en un algoritmo de muestreo por grilla. El procedimiento fue programado y ejecutado exitosamente, y se obtuvo la primera estimación del parámetro de correlación con datos de campo para peso al destete en bovinos de carne. Por último, se considera el problema de la estimación de CVC en una población multirracial, donde en general es necesario especificar una estructura de covarianza heterogénea para los valores de cría. En particular, se demuestra que el modelo basado en la descomposición de la matriz de covarianza genética es equivalente al que deriva de la teoría genética cuantitativa. Además, se extiende el modelo para incluir efectos maternos y se describe la implementación de un análisis bayesiano jerárquico con el objetivo de estimar los CVC. El procedimiento fue implementado con éxito en datos experimentales de peso al destete y se obtuvieron por primera vez estimaciones para el conjunto completo de CVC.
Resumo:
Reconociendo la importancia que tienen los algoritmos en el proceso de resolución de problemas, particularmente en la geometría, se identificaron algunas formas en las que se usan algoritmos que son conocidos para los resolutores, durante la resolución de algún problema. A tales formas se les ha dado el nombre de uso de algoritmos y, específicamente, se describen y se muestran evidencias de los usos relacionados con la obtención de nueva información que permita ampliar los caminos considerados para la solución del problema.