960 resultados para Ca2 Transient
Resumo:
BACKGROUND:: Sometimes, a temporary increase in alkaline phosphatase level is found in healthy infants and toddlers without evidence of liver or bone disease. The condition is customarily termed transient benign hyperphosphatasemia of infancy and early childhood. Most textbooks do not refer to the condition. METHODS:: We completed a systematic review of the literature using the principles underlying the UK Economic and Social Research Council guidance on the conduct of narrative synthesis and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. RESULTS:: The 142 reports retained for analysis included 813 cases (male:female ratio = 1.1:1.0): 80 in subjects >18 years and 733 in subjects ≤18 years of age. The alkaline phosphatase ratio, calculated by dividing the measured level by the upper normal limit, was ≥5.0 in ≈70% and the duration of the elevation ≤4 months in 80% of the cases. Transient benign hyperphosphatasemia often followed a benign infection but available data fail to demonstrate a causal link. The prevalence of transient benign hyperphosphatasemia ranged 1.1-3.5% in infants 2 to 24 months of age. CONCLUSIONS:: Transient benign hyperphosphatasemia is likely the most common cause of hyperphosphatasemia among healthy infants and toddlers. Sometimes, it also occurs in older children and adults, indicating that the traditional term transient benign hyperphosphatasemia of infancy and early childhood might not be correct. The elevation in alkaline phosphatase persists for >4 months in ≈20% of the cases. Recognition of this benign condition is crucial to avoid unnecessary investigations.
Resumo:
[1] The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.
Resumo:
The apical tuft of layer 5 pyramidal neurons is innervated by a large number of inhibitory inputs with unknown functions. Here, we studied the functional consequences and underlying molecular mechanisms of apical inhibition on dendritic spike activity. Extracellular stimulation of layer 1, during blockade of glutamatergic transmission, inhibited the dendritic Ca2+ spike for up to 400 ms. Activation of metabotropic GABAB receptors was responsible for a gradual and long-lasting inhibitory effect, whereas GABAA receptors mediated a short-lasting (approximately 150 ms) inhibition. Our results suggest that the mechanism underlying the GABAB inhibition of Ca2+ spikes involves direct blockade of dendritic Ca2+ channels. By using knockout mice for the two predominant GABAB1 isoforms, GABAB1a and GABAB1b, we showed that postsynaptic inhibition of Ca2+ spikes is mediated by GABAB1b, whereas presynaptic inhibition of GABA release is mediated by GABAB1a. We conclude that the molecular subtypes of GABAB receptors play strategically different physiological roles in neocortical neurons.
Resumo:
The dynamics of focusing weak bases using a transient pH boundary was examined via high-resolution computer simulation software. Emphasis was placed on the mechanism and impact that the presence of salt, namely, NaCl, has on the ability to focus weak bases. A series of weak bases with mobilities ranging from 5 x 10(-9) to 30 x 10(-9) m2/V x s and pKa values between 3.0 and 7.5 were examined using a combination of 65.6 mM formic acid, pH 2.85, for the separation electrolyte, and 65.6 mM formic acid, pH 8.60, for the sample matrix. Simulation data show that it is possible to focus weak bases with a pKa value similar to that of the separation electrolyte, but it is restricted to weak bases having an electrophoretic mobility of 20 x 10(-9) m2/V x s or quicker. This mobility range can be extended by the addition of NaCl, with 50 mM NaCl allowing stacking of weak bases down to a mobility of 15 x 10(-9) m2/V x s and 100 mM extending the range to 10 x 10(-9) m2/V x s. The addition of NaCl does not adversely influence focusing of more mobile bases, but does prolong the existence of the transient pH boundary. This allows analytes to migrate extensively through the capillary as a single focused band around the transient pH boundary until the boundary is dissipated. This reduces the length of capillary that is available for separation and, in extreme cases, causes multiple analytes to be detected as a single highly efficient peak.
Resumo:
We have used a recombinant mouse pre-B cell line (TonB210.1, expressing Bcr/Abl under the control of an inducible promoter) and several human leukemia cell lines to study the effect of high tyrosine kinase activity on G protein-coupled receptor (GPCR) agonist-stimulated cellular Ca(2+) release and store-operated Ca(2+) entry (SOCE). After induction of Bcr/Abl expression, GPCR-linked SOCE increased. The effect was reverted in the presence of the specific Abl inhibitor imatinib (1microM) and the Src inhibitor PP2 (10microM). In leukemic cell lines constitutively expressing high tyrosine kinase activity, Ca(2+) transients were reduced by imatinib and/or PP2. Ca(2+) transients were enhanced by specific inhibitors of PKC subtypes and this effect was amplified by tyrosine kinase inhibition in Bcr/Abl expressing TonB210.1 and K562 cells. Under all conditions Ca(2+) transients were essentially blocked by the PKC activator PMA. In Bcr/Abl expressing (but not in native) TonB210.1 cells, tyrosine kinase inhibitors enhanced PKCalpha catalytic activity and PKCalpha co-immunoprecipitated with Bcr/Abl. Unlike native TonB210.1 cells, Bcr/Abl expressing cells showed a high rate of cell death if Ca(2+) influx was reduced by complexing extracellular Ca(2+) with BAPTA. Our data suggest that tonic inhibition of PKC represents a mechanism by which high tyrosine kinase activity can enhance cellular Ca(2+) transients and thus exert profound effects on the proliferation, apoptosis and chemotaxis of leukemic cells.
Resumo:
The spatial segregation of the plasma membrane plays a prominent role in distinguishing and sorting a large number of signals a cell receives simultaneously. The plasma membrane comprises regions known as lipid rafts, which serve as signal-transduction hubs and platforms for sorting membrane-associated proteins. Ca(2+)-binding proteins of the annexin family have been ascribed a role in the regulation of raft dynamics. Glycosylphosphatidylinositol-anchored 5'-nucleotidase is an extracellular, raft-associated enzyme responsible for conversion of extracellular ATP into adenosine. Our results point to a regulation of ecto-5'-nucleotidase activity by Ca(2+)-dependent, annexin-mediated stabilization of membrane rafts.
Resumo:
BACKGROUND AND PURPOSE: The effect of thrombolysis depends on the time from stroke onset to treatment and therefore also on the time when patients come to the hospital. This study was designed to analyze the variables that influence the time from symptom onset to admission (TTA) to the stroke unit. METHODS: We evaluated the medical records of 615 consecutive stroke or transient ischemic attack (TIA) patients admitted to our neurological department within 48 hours after symptom onset. RESULTS: The median TTA was 180 minutes. Referral by emergency medical services (EMS; P<0.001), high National Institutes of Health Stroke Scale (NIHSS) scores (P<0.001), strokes in the carotid territory (P<0.001), and strokes not attributable to small vessel disease (P<0.001) were associated with shorter prehospital delays. The TTA was adjusted for travel times (adjTTA), and all these variables remained significantly associated with time to admission. In addition, patients with previous experience with stroke or TIA had longer adjTTA (P=0.028). Regression analysis confirmed the independent association between referral by EMS (P=0.010), high NIHSS scores (P<0.001), carotid territory stroke (P<0.001), and first-ever cerebrovascular event (P=0.022) with shorter adjTTA. CONCLUSIONS: Factors such as NIHSS scores and stroke location influence the time to admission but, unlike referral pathways, cannot be modified. Educational programs and stroke campaigns should therefore not only teach typical and less common stroke symptoms and signs but also that EMS provides the fastest means of transportation to a stroke unit and the best chances to get treatment early.
Resumo:
To report a rare side effect of gamma knife treatment of pituitary macroadenoma.
Resumo:
Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.
Resumo:
Since the discovery of the Ca(2+) spark as an elementary event of cellular Ca(2+) signaling almost 15 years ago, the family of newly described Ca(2+) signal entities has been ever growing. While scientists working in Ca(2+) signaling may have maintained an overview over the specifics of this nomenclature, those outside the field often make the complaint that they feel hopelessly lost. With the present review we collect and summarize systematic information on the many Ca(2+) signaling events described in a variety of tissues and cells, and we emphasize why and how each of them has its own importance. Most of these signals are taking place in the cytosol of the respective cells, but several events have been recorded from intracellular organelles as well, where they may serve their own specific functions. Finally, we also try to convey an integrated view as to why cellular microdomain signaling is of fundamental biological importance.
Resumo:
BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC beta-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac beta-subunits: Unlike beta(1) or beta(3) isoforms, beta(2a) and beta(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, beta(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal beta(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing ("Adaptive Phase"), reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered beta(2) expression. Additional evidence for the cause-effect relationship between beta(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible beta(2) cardiac overexpression. Here in non-failing hearts induction of beta(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of beta(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.
Resumo:
BACKGROUND AND PURPOSE: Time delays from stroke onset to arrival at the hospital are the main obstacles for widespread use of thrombolysis. In order to decrease the delays, educational campaigns try to inform the general public how to act optimally in case of stroke. To determine the content of such a campaign, we assessed the stroke knowledge in our population. METHODS: The stroke knowledge was studied by means of a closed-ended questionnaire. 422 randomly chosen inhabitants of Bern, Switzerland, were interviewed. RESULTS: The knowledge of stroke warning signs (WS) was classified as good in 64.7%. A good knowledge of stroke risk factors (RF) was noted in 6.4%. 4.2% knew both the WS and the RF of stroke indicating a very good global knowledge of stroke. Only 8.3% recognized TIA as symptoms of stroke resolving within 24 hours, and only 2.8% identified TIA as a disease requiring immediate medical help. In multivariate analysis being a woman, advancing age, and having an afflicted relative were associated with a good knowledge of WS (p = 0.048, p < 0.001 and p = 0.043). Good knowledge of RF was related to university education (p < 0.001). The good knowledge of TIA did not depend on age, sex, level of education or having an afflicted relative. CONCLUSIONS: The study brings to light relevant deficits of stroke knowledge in our population. A small number of participants could recognize TIA as stroke related symptoms resolving completely within 24 hours. Only a third of the surveyed persons would seek immediate medical help in case of TIA. The information obtained will be used in the development of future educational campaigns.