975 resultados para CYTOCHROME-C MICROPEROXIDASE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an unprecedented finding, Davis et al. [Davis, R. E., Miller, S., Herrnstadt, C., Ghosh, S. S., Fahy, E., Shinobu, L. A., Galasko, D., Thal, L. J., Beal, M. F., Howell, N. & Parker, W. D., Jr. (1997) Proc. Natl. Acad. Sci. USA 94, 4526–4531] used an unusual DNA isolation method to show that healthy adults harbor a specific population of mutated mitochondrial cytochrome c oxidase (COX) genes that coexist with normal mtDNAs. They reported that this heteroplasmic population was present at a level of 10–15% in the blood of normal individuals and at a significantly higher level (20–30%) in patients with sporadic Alzheimer’s disease. We provide compelling evidence that the DNA isolation method employed resulted in the coamplification of authentic mtDNA-encoded COX genes together with highly similar COX-like sequences embedded in nuclear DNA (“mtDNA pseudogenes”). We conclude that the observed heteroplasmy is an artifact.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A progressive decline in muscle performance in the rapidly expanding aging population is causing a dramatic increase in disability and health care costs. A decrease in muscle endurance capacity due to mitochondrial decay likely contributes to this decline in muscle performance. We developed a novel stable isotope technique to measure in vivo rates of mitochondrial protein synthesis in human skeletal muscle using needle biopsy samples and applied this technique to elucidate a potential mechanism for the age-related decline in the mitochondrial content and function of skeletal muscle. The fractional rate of muscle mitochondrial protein synthesis in young humans (24 ± 1 year) was 0.081 ± 0.004%·h−1, and this rate declined to 0.047 ± 0.005%·h−1 by middle age (54 ± 1 year; P < 0.01). No further decline in the rate of mitochondrial protein synthesis (0.051 ± 0.004%·h−1) occurred with advancing age (73 ± 2 years). The mitochondrial synthesis rate was about 95% higher than that of mixed protein in the young, whereas it was approximately 35% higher in the middle-aged and elderly subjects. In addition, decreasing activities of mitochondrial enzymes were observed in muscle homogenates (cytochrome c oxidase and citrate synthase) and in isolated mitochondria (citrate synthase) with increasing age, indicating declines in muscle oxidative capacity and mitochondrial function, respectively. The decrease in the rates of mitochondrial protein synthesis is likely to be responsible for this decline in muscle oxidative capacity and mitochondrial function. These changes in muscle mitochondrial protein metabolism may contribute to the age-related decline in aerobic capacity and muscle performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We cloned a new inhibitor of apoptosis protein (IAP) homolog, SfIAP, from Spodoptera frugiperda Sf-21 cells, a host of insect baculoviruses. SfIAP contains two baculovirus IAP repeat domains followed by a RING domain. SfIAP has striking amino acid sequence similarity with baculoviral IAPs, CpIAP and OpIAP, suggesting that baculoviral IAPs may be host-derived genes. SfIAP and baculoviral CpIAP inhibit Bax but not Fas-induced apoptosis in human cells. Their apoptosis-suppressing activity in mammalian cells requires both baculovirus IAP repeat and RING domains. Further biochemical data suggest that SfIAP and CpIAP are specific inhibitors of mammalian caspase-9, the pinnacle caspase in the mitochondria/cytochrome c pathway for apoptosis, but are not inhibitors of downstream caspase-3 and caspase-7. Thus the mechanisms by which insect and baculoviral IAPs suppress apoptosis may involve inhibition of an insect caspase-9 homologue. Peptides representing the IAP-binding domain of the Drosophila cell death protein Grim abrogated human caspase suppression by SfIAP and CpIAP, implying evolutionary conservation of the functions of IAPs and their inhibitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A de novo sequencing program for proteins is described that uses tandem MS data from electron capture dissociation and collisionally activated dissociation of electrosprayed protein ions. Computer automation is used to convert the fragment ion mass values derived from these spectra into the most probable protein sequence, without distinguishing Leu/Ile. Minimum human input is necessary for the data reduction and interpretation. No extra chemistry is necessary to distinguish N- and C-terminal fragments in the mass spectra, as this is determined from the electron capture dissociation data. With parts-per-million mass accuracy (now available by using higher field Fourier transform MS instruments), the complete sequences of ubiquitin (8.6 kDa) and melittin (2.8 kDa) were predicted correctly by the program. The data available also provided 91% of the cytochrome c (12.4 kDa) sequence (essentially complete except for the tandem MS-resistant region K13–V20 that contains the cyclic heme). Uncorrected mass values from a 6-T instrument still gave 86% of the sequence for ubiquitin, except for distinguishing Gln/Lys. Extensive sequencing of larger proteins should be possible by applying the algorithm to pieces of ≈10-kDa size, such as products of limited proteolysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In adult forebrain, nerve growth factor (NGF) influences neuronal maintenance and axon sprouting and is neuroprotective in several injury models through mechanisms that are incompletely understood. Most NGF signaling is thought to occur after internalization and retrograde transport of trkA receptor and be mediated through the nucleus. However, NGF expression in hippocampus is rapidly and sensitively regulated by synaptic activity, suggesting that NGF exerts local effects more dynamically than possible through signaling requiring retrograde transport to distant afferent neurons. Interactions have been reported between NGF and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, and trk receptors can mediate signaling within minutes, we hypothesized that NGF might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of l-[14C]arginine to l-[14C]citrulline as an accurate reflection of NO synthase (NOS) activity in adult rat hippocampus. NGF significantly reduced NOS activity to 61% of basal levels within 20 min of onset of delivery and maintained NOS activity at less than 50% of baseline throughout 3 hr of delivery. This effect did not occur with control protein (cytochrome c) and was not mediated by an effect of NGF on glutamate levels. In addition, simultaneous delivery of NGF prevented significant increases in NOS activity triggered by the glutamate receptor agonists N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Rapid suppression by NGF of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of NGF and other neurotrophins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In most eukaryotic cells, mitochondria use the respiratory chain to produce a proton gradient, which is then harnessed for the synthesis of ATP. Recently, mitochondrial roles in regulation of apoptosis have been discovered in many cell types. Eosinophils (Eos) die by apoptosis, but the presence and function of mitochondria in Eos are unknown. This study found that Eos contain mitochondria in small numbers, as shown by labeling with membrane potential-sensitive dyes and in situ PCR for a mitochondrial gene. Eos generate mitochondrial membrane potential from hydrolysis of ATP rather than from respiration, as shown by mitochondrial respiratory inhibitors and mitochondrial uncouplers. The mitochondria provide insignificant respiration but can induce apoptosis, as shown by using the mitochondrial F1F0-ATPase inhibitor oligomycin and translocation of cytochrome c. Thus during differentiation of Eos, although respiration is lost, the other central role of mitochondria, the induction of apoptosis, is retained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The expression of DCC (deleted in colorectal cancer) is often markedly reduced in colorectal and other cancers. However, the rarity of point mutations identified in DCC coding sequences and the lack of a tumor predisposition phenotype in DCC hemizygous mice have raised questions about its role as a tumor suppressor. DCC also mediates axon guidance and functions as a dependence receptor; such receptors create cellular states of dependence on their respective ligands by inducing apoptosis when unoccupied by ligand. We now show that DCC drives cell death independently of both the mitochondria-dependent pathway and the death receptor/caspase-8 pathway. Moreover, we demonstrate that DCC interacts with both caspase-3 and caspase-9 and drives the activation of caspase-3 through caspase-9 without a requirement for cytochrome c or Apaf-1. Hence, DCC defines an additional pathway for the apoptosome-independent caspase activation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current understanding of electron tunneling through proteins has come from work on systems where donors and acceptors are held at fixed distances and orientations. The factors that control electron flow between proteins are less well understood, owing to uncertainties in the relative orientations and structures of the reactants during the very short time that tunneling occurs. As we report here, the way around such structural ambiguity is to examine oxidation–reduction reactions in protein crystals. Accordingly, we have measured and analyzed the kinetics of electron transfer between native and Zn-substituted tuna cytochrome c (cyt c) molecules in crystals of known structure. Electron transfer rates [(320 s−1 for *Zn-cyt c → Fe(III)-cyt c; 2000 s−1 for Fe(II)-cyt c → Zn-cyt c+)] over a Zn–Fe distance of 24.1 Å closely match those for intraprotein electron tunneling over similar donor–acceptor separations. Our results indicate that van der Waals interactions and water-mediated hydrogen bonds are effective coupling elements for tunneling across a protein–protein interface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anticancer agents target various subcellular components and trigger apoptosis in chemosensitive cells. We have recently reported the tumor cell growth inhibitory properties of a mixture of triterpenoid saponins obtained from an Australian desert tree (Leguminosae) Acacia victoriae (Bentham). Here we report the purification of this mixture into two biologically pure components called avicins that contain an acacic acid core with two acyclic monoterpene units connected by a quinovose sugar. We demonstrate that the mixture of triterpenoid saponins and avicins induce apoptosis in the Jurkat human T cell line by affecting the mitochondrial function. Avicin G induced cytochrome c release within 30–120 min in whole cells and within a minute in the cell-free system. Caspase inhibitors DEVD or zVAD-fmk had no effect on cytochrome c release, suggesting the direct action of avicin G on the mitochondria. Activation of caspase-3 and total cleavage of poly(ADP-ribose) polymerase (PARP) occurred between 2 and 6 h posttreatment with avicins by zVAD-fmk. Interestingly, in the treated cells no significant changes in the membrane potential preceded or accompanied cytochrome c release. A small decrease in the generation of reactive oxygen species (ROS) was measured. The study of these evolutionarily ancient compounds may represent an interesting paradigm for the application of chemical ecology and chemical biology to human health.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an effort to identify the enzymatic mechanism responsible for the synthesis of reactive oxygen species produced during the hypersensitive response, preparations of rose (Rosa damascena) cell plasma membranes, partially solubilized plasma membrane protein, and cytosol were assayed for the NADH- and NADPH-dependent synthesis of superoxide using assays for the reduction of cytochrome c (Cyt c), assays for the reduction of nitroblue tetrazolium, and assays for the chemiluminescence of N,N′-dimethyl-9,9′-biacridium dinitrate (lucigenin). Each assay ascribed the highest activity to a different preparation: the Cyt c assay to cytosol, the nitroblue tetrazolium assay to plasma membrane, and the lucigenin assay to the partially solubilized plasma membrane protein (with NADH). This suggests that no two assays measure the same set of enzymes and that none of the assays is suitable for comparisons of superoxide synthesis among different cell fractions. With the plasma membrane preparation, the presence of large amounts of superoxide-dismutase-insensitive Cyt c reductase confounded attempts to use Cyt c to measure superoxide synthesis. With the partially solubilized membrane protein, direct reduction of lucigenin probably contributed to the chemiluminescence. Superoxide synthesis detected with lucigenin should be confirmed by superoxide-dismutase-sensitive Cyt c reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Honeybees rely primarily on the oxidation of hexose sugars to provide the energy required for flight. Measurement of VCO2 (equal to VO2, because VCO2/VO2 = 1.0 during carbohydrate oxidation) during flight allowed estimation of steady-state flux rates through pathways of flight muscle energy metabolism. Comparison of Vmax values for flight muscle hexokinase, phosphofructokinase, citrate synthase, and cytochrome c oxidase with rates of carbon and O2 flux during flight reveal that these enzymes operate closer to Vmax in the flight muscles of flying honeybees than in other muscles previously studied. Possible mechanistic and evolutionary implications of these findings are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several studies have indicated that degradation of certain mRNAs is tightly coupled to their translation, whereas, in contrast, other observations suggested that translation can be inhibited without changing the stability of the mRNA. We have addressed this question with the use of altered CYC1 alleles, which encode iso-1-cytochrome c in the yeast Saccharomyces cerevisiae. The cyc1-1249 mRNA, which lacks all in-frame and out-of-frame AUG triplets, was as stable as the normal mRNA. This finding established that translation is not required for the degradation of CYC1 mRNAs. Furthermore, poly(G)18 tracks were introduced within the CYC1 mRNA translated regions to block exonuclease degradation. The recovery of 3' fragments revealed that the translatable and the AUG-deficient mRNAs are both degraded 5'-->3'. Also, the increased stability of CYC1 mRNAs in xrn1-delta strains lacking Xrn1p, the major 5'-->3' exonuclease, established that the normal and AUG-deficient mRNAs are degraded by the same pathway. In addition, deadenylylation, which activates the action of Xrn1p, occurred at equivalent rates in both normal and AUG-deficient mRNAs. We conclude that translation is not required for the normal degradation of CYC1 mRNAs, and that translatable and untranslated mRNAs are degraded by the same pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mitochondrial genes for cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 5 (ND5) of the sea anemone Metridium senile (phylum Cnidaria) each contain a group I intron. This is in contrast to the reported absence of introns in all other metazoan mtDNAs so far examined. The ND5 intron is unusual in that it ends with A and contains two genes (ND1 and ND3) encoding additional subunits of NADH dehydrogenase. Correctly excised ND5 introns are not circularized but are precisely cleaved near their 3' ends and polyadenylylated to provide bicistronic transcripts of ND1 and ND3. COI introns, which encode a putative homing endonuclease, circularize, but in a way that retains the entire genome-encoded intron sequence (other group I introns are circularized with loss of a short segment of the intron 5' end). Introns were detected in the COI and ND5 genes of other sea anemones, but not in the COI and ND5 genes of other cnidarians. This suggests that the sea anemone mitochondrial introns may have been acquired relatively recently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cause for death after lethal heat shock is not well understood. A shift from low to intermediate temperature causes the induction of heat-shock proteins in most organisms. However, except for HSP104, a convincing involvement of heat-shock proteins in the development of stress resistance has not been established in Saccharomyces cerevisiae. This paper shows that oxidative stress and antioxidant enzymes play a major role in heat-induced cell death in yeast. Mutants deleted for the antioxidant genes catalase, superoxide dismutase, and cytochrome c peroxidase were more sensitive to the lethal effect of heat than isogenic wild-type cells. Overexpression of catalase and superoxide dismutase genes caused an increase in thermotolerance. Anaerobic conditions caused a 500- to 20,000-fold increase in thermotolerance. The thermotolerance of cells in anaerobic conditions was immediately abolished upon oxygen exposure. HSP104 is not responsible for the increased resistance of anaerobically grown cells. The thermotolerance of anaerobically grown cells is not due to expression of heat-shock proteins. By using an oxidation-dependent fluorescent molecular probe a 2- to 3-fold increase in fluorescence was found upon heating. Thus, we conclude that oxidative stress is involved in heat-induced cell death.