661 resultados para CUG codon
Resumo:
In Caenorhabditis elegans, pre-mRNA for the essential splicing factor U2AF65 sometimes is spliced to produce an RNA that includes an extra 216-bp internal exon, exon 3. Inclusion of exon 3 inserts an in-frame stop codon, yet this RNA is not subject to SMG-mediated RNA surveillance. To test whether exon 3 causes RNA to remain nuclear and thereby escape decay, we inserted it into the 3′ untranslated region of a gfp reporter gene. Although exon 3 did not affect accumulation or processing of the mRNA, it dramatically suppressed expression of green fluorescent protein (GFP). We showed by in situ hybridization that exon 3-containing gfp RNA is retained in the nucleus. Intriguingly, exon 3 contains 10 matches to the 8-bp 3′ splice-site consensus. We hypothesized that U2AF might recognize this octamer and thereby prevent export. This idea is supported by RNA interference experiments in which reduced levels of U2AF resulted in a small burst of gfp expression.
Resumo:
Our recent demonstration that many eukaryotic mRNAs contain sequences complementary to rRNA led to the hypothesis that these sequences might mediate specific interactions between mRNAs and ribosomes and thereby affect translation. In the present experiments, the ability of complementary sequences to bind to rRNA was investigated by using photochemical cross-linking. RNA probes with perfect complementarity to 18S or 28S rRNA were shown to cross-link specifically to the corresponding rRNA within intact ribosomal subunits. Similar results were obtained by using probes based on natural mRNA sequences with varying degrees of complementarity to the 18S rRNA. RNase H cleavage localized four such probes to complementary regions of the 18S rRNA. The effects of complementarity on translation were assessed by using the mRNA encoding ribosomal protein S15. This mRNA contains a sequence within its coding region that is complementary to the 18S rRNA at 20 of 22 nucleotides. RNA from an S15-luciferase fusion construct was translated in a cell-free lysate and compared with the translation of four related constructs that were mutated to decrease complementarity to the 18S rRNA. These mutations did not alter the amino acid sequence or the codon bias. A correlation between complementarity and translation was observed; constructs with less complementarity increased the amount of translation up to 54%. These findings raised the possibility that direct base-pairing of particular mRNAs to rRNAs within ribosomes may function as a mechanism of translational control.
Resumo:
Intragenic complementation has been observed at the argininosuccinate lyase (ASL) locus. Intragenic complementation is a phenomenon that occurs when a multimeric protein is formed from subunits produced by different mutant alleles of a gene. The resulting hybrid protein exhibits enzymatic activity that is greater than that found in the oligomeric proteins produced by each mutant allele alone. The mutations involved in the most successful complementation event observed in ASL deficiency were found to be an aspartate to glycine mutation at codon 87 of one allele (D87G) coupled with a glutamine to arginine mutation at codon 286 of the other (Q286R). To understand the structural basis of the Q286R:D87G intragenic complementation event at the ASL locus, we have determined the x-ray crystal structure of recombinant human ASL at 4.0 Å resolution. The structure has been refined to an R factor of 18.8%. Two monomers related by a noncrystallographic 2-fold axis comprise the asymmetric unit, and a crystallographic 2-fold axis of space group P3121 completes the tetramer. Each of the four active sites is composed of residues from three monomers. Structural mapping of the Q286R and D87G mutations indicate that both are near the active site and each is contributed by a different monomer. Thus when mutant monomers combine randomly such that one active site contains both mutations, it is required by molecular symmetry that another active site exists with no mutations. These “native” active sites give rise to the observed partial recovery of enzymatic activity.
Resumo:
Tangier disease is characterized by low serum high density lipoproteins and a biochemical defect in the cellular efflux of lipids to high density lipoproteins. ABC1, a member of the ATP-binding cassette family, recently has been identified as the defective gene in Tangier disease. We report here the organization of the human ABC1 gene and the identification of a mutation in the ABC1 gene from the original Tangier disease kindred. The organization of the human ABC1 gene is similar to that of the mouse ABC1 gene and other related ABC genes. The ABC1 gene contains 49 exons that range in size from 33 to 249 bp and is over 70 kb in length. Sequence analysis of the ABC1 gene revealed that the proband for Tangier disease was homozygous for a deletion of nucleotides 3283 and 3284 (TC) in exon 22. The deletion results in a frameshift mutation and a premature stop codon starting at nucleotide 3375. The product is predicted to encode a nonfunctional protein of 1,084 aa, which is approximately half the size of the full-length ABC1 protein. The loss of a Mnl1 restriction site, which results from the deletion, was used to establish the genotype of the rest of the kindred. In summary, we report on the genomic organization of the human ABC1 gene and identify a frameshift mutation in the ABC1 gene of the index case of Tangier disease. These results will be useful in the future characterization of the structure and function of the ABC1 gene and the analysis of additional ABC1 mutations in patients with Tangier disease.
Resumo:
Biological speciation ultimately results in prezygotic isolation—the inability of incipient species to mate with one another–but little is understood about the selection pressures and genetic changes that generate this outcome. The genus Chlamydomonas comprises numerous species of unicellular green algae, including numerous geographic isolates of the species C. reinhardtii. This diverse collection has allowed us to analyze the evolution of two sex-related genes: the mid gene of C. reinhardtii, which determines whether a gamete is mating-type plus or minus, and the fus1 gene, which dictates a cell surface glycoprotein utilized by C. reinhardtii plus gametes to recognize minus gametes. Low stringency Southern analyses failed to detect any fus1 homologs in other Chlamydomonas species and detected only one mid homolog, documenting that both genes have diverged extensively during the evolution of the lineage. The one mid homolog was found in C. incerta, the species in culture that is most closely related to C. reinhardtii. Its mid gene carries numerous nonsynonymous and synonymous codon changes compared with the C. reinhardtii mid gene. In contrast, very high sequence conservation of both the mid and fus1 sequences is found in natural isolates of C. reinhardtii, indicating that the genes are not free to drift within a species but do diverge dramatically between species. Striking divergence of sex determination and mate recognition genes also has been encountered in a number of other eukaryotic phyla, suggesting that unique, and as yet unidentified, selection pressures act on these classes of genes during the speciation process.
Resumo:
The integrin family of cell surface receptors is strongly conserved in higher animals, but the evolutionary history of integrins is obscure. We have identified and sequenced cDNAs encoding integrin β subunits from a coral (phylum Cnidaria) and a sponge (Porifera), indicating that these proteins existed in the earliest stages of metazoan evolution. The coral βCn1 and, especially, the sponge βPo1 sequences are the most divergent of the “β1-class” integrins and share a number of features not found in any other vertebrate or invertebrate integrins. Perhaps the greatest difference from other β subunits is found in the third and fourth repeats of the cysteine-rich stalk, where the generally conserved spacings between cysteines are highly variable, but not similar, in βCn1 and βPo1. Alternatively spliced cDNAs, containing a stop codon about midway through the full-length translated sequence, were isolated from the sponge library. These cDNAs appear to define a boundary between functional domains, as they would encode a protein that includes the globular ligand-binding head but would be missing the stalk, transmembrane, and cytoplasmic domains. These and other sequence comparisons with vertebrate integrins are discussed with respect to models of integrin structure and function.
Resumo:
A pseudoknot formed by a long-range interaction in the mRNA of the initiation factor 3 (IF3) operon is involved in the translational repression of the gene encoding ribosomal protein L35 by another ribosomal protein, L20. The nucleotides forming the 5′ strand of the key stem of the pseudoknot are located within the gene for IF3, whereas those forming the 3′ strand are located 280 nt downstream, immediately upstream of the Shine–Dalgarno sequence of the gene for L35. Here we show that premature termination of IF3 translation at a nonsense codon introduced upstream of the pseudoknot results in a substantial enhancement of L20-mediated repression of L35 expression. Conversely, an increase of IF3 translation decreases repression. These results, in addition to an analysis of the effect of mutations in sequences forming the pseudoknot, indicate that IF3 translation decreases L20-mediated repression of L35 expression. We propose that ribosomes translating IF3 disrupt the pseudoknot and thereby attenuate repression. The result is a novel type of translational coupling, where unfolding of the pseudoknot by ribosomes translating IF3 does not increase expression of L35 directly, but alleviates its repression by L20.
Resumo:
The expression of alternatively spliced mRNAs from genes is an ubiquitous phenomenon in metazoa. A screen for trans-acting factors that alter the expression of alternatively spliced mRNAs reveals that the smg genes of Caenorhabditis elegans participate in this process. smg genes have been proposed to function in degradation of nonsense mutant mRNAs. Here we show that smg genes affect normal gene expression by modulating the levels of alternatively spliced SRp20 and SRp30b mRNAs. These SR genes contain alternatively spliced exons that introduce upstream stop codons. The effect of smg genes on SR transcripts is specific, because the gene encoding the catalytic subunit of the cAMP-dependent protein kinase, which also contains an alternatively spliced exon that introduces upstream stop codon, is not effected in a smg background. These results suggest that the levels of alternatively spliced mRNAs may, in part, be regulated by alternative mRNA stability.
Resumo:
β-catenin has functions as both an adhesion and a signaling molecule. Disruption of these functions through mutations of the β-catenin gene (CTNNB1) may be important in the development of colorectal tumors. We examined the entire coding sequence of β-catenin by reverse transcriptase–PCR (RT-PCR) and direct sequencing of 23 human colorectal cancer cell lines from 21 patients. In two cell lines, there was apparent instability of the β-catenin mRNA. Five different mutations (26%) were found in the remaining 21cell lines (from 19 patients). A three-base deletion (codon 45) was identified in the cell line HCT 116, whereas cell lines SW 48, HCA 46, CACO 2, and Colo 201 each contained single-base missense mutations (codons 33, 183, 245, and 287, respectively). All 23 cell lines had full-length β-catenin protein that was detectable by Western blotting and that coprecipitated with E-cadherin. In three of the cell lines with CTNNB1 mutations, complexes of β-catenin with α-catenin and APC were detectable. In SW48 and HCA 46, however, we did not detect complexes of β-catenin protein with α-catenin and APC, respectively. These results show that selection of CTNNB1 mutations occurs in up to 26% of colorectal cancers from which cell lines are derived. In these cases, mutation selection is probably for altered β-catenin function, which may significantly alter intracellular signaling and intercellular adhesion and may serve as a complement to APC mutations in the early stages of tumorigenesis.
Resumo:
The partially overlapping ORF P and ORF O are located within the domains of the herpes simplex virus 1 genome transcribed during latency. Earlier studies have shown that ORF P is repressed by infected cell protein 4 (ICP4), the major viral regulatory protein, binding to its cognate site at the transcription initiation site of ORF P. The ORF P protein binds to p32, a component of the ASF/SF2 alternate splicing factors; in cells infected with a recombinant virus in which ORF P was derepressed there was a significant decrease in the expression of products of key regulatory genes containing introns. We report that (i) the expression of ORF O is repressed during productive infection by the same mechanism as that determining the expression of ORF P; (ii) in cells infected at the nonpermissive temperature for ICP4, ORF O protein is made in significantly lower amounts than the ORF P protein; (iii) the results of insertion of a sequence encoding 20 amino acids between the putative initiator methionine codons of ORF O and ORF P suggest that ORF O initiates at the methionine codon of ORF P and that the synthesis of ORF O results from frameshift or editing of its RNA; and (iv) glutathione S-transferase–ORF O fusion protein bound specifically ICP4 and precluded its binding to its cognate site on DNA in vitro. These and earlier results indicate that ORF P and ORF O together have the capacity to reduce the synthesis or block the expression of regulatory proteins essential for viral replication in productive infection.
Resumo:
A method for site-specific, nitrobenzyl-induced photochemical proteolysis of diverse proteins expressed in living cells has been developed based on the chemistry of the unnatural amino acid (2-nitrophenyl)glycine (Npg). Using the in vivo nonsense codon suppression method for incorporating unnatural amino acids into proteins expressed in Xenopus oocytes, Npg has been incorporated into two ion channels: the Drosophila Shaker B K+ channel and the nicotinic acetylcholine receptor. Functional studies in vivo show that irradiation of proteins containing an Npg residue does lead to peptide backbone cleavage at the site of the novel residue. Using this method, evidence is obtained for an essential functional role of the “signature” Cys128–Cys142 disulfide loop of the nAChR α subunit.
Resumo:
Short peptides corresponding to the arginine-rich domains of several RNA-binding proteins are able to bind to their specific RNA sites with high affinities and specificities. In the case of the HIV-1 Rev-Rev response element (RRE) complex, the peptide forms a single α-helix that binds deeply in a widened, distorted RNA major groove and makes a substantial set of base-specific and backbone contacts. Using a reporter system based on antitermination by the bacteriophage λ N protein, it has been possible to identify novel arginine-rich peptides from combinatorial libraries that recognize the RRE with affinities and specificities similar to Rev but that appear to bind in nonhelical conformations. Here we have used codon-based mutagenesis to evolve one of these peptides, RSG-1, into an even tighter binder. After two rounds of evolution, RSG-1.2 bound the RRE with 7-fold higher affinity and 15-fold higher specificity than the wild-type Rev peptide, and in vitro competition experiments show that RSG-1.2 completely displaces the intact Rev protein from the RRE at low peptide concentrations. By fusing RRE-binding peptides to the activation domain of HIV-1 Tat, we show that the peptides can deliver Tat to the RRE site and activate transcription in mammalian cells, and more importantly, that the fusion proteins can inhibit the activity of Rev in chloramphenicol acetyltransferase reporter assays. The evolved peptides contain proline and glutamic acid mutations near the middle of their sequences and, despite the presence of a proline, show partial α-helix formation in the absence of RNA. These directed evolution experiments illustrate how readily complex peptide structures can be evolved within the context of an RNA framework, perhaps reflecting how early protein structures evolved in an “RNA world.”
Resumo:
To study the molecular basis for the clinical phenotype of incomplete penetrance of familial retinoblastoma, we have examined the functional properties of three RB mutations identified in the germ line of five different families with low penetrance. RB mutants isolated from common adult cancers and from classic familial retinoblastoma (designated as classic RB mutations) are unstable and generally do not localize to the nucleus, do not undergo cyclin-dependent kinase (cdk)-mediated hyperphosphorylation, show absent protein “pocket” binding activity, and do not suppress colony growth of RB(−) cells. In contrast, two low-penetrant alleles (661W and “deletion of codon 480”) retained the ability to localize to the nucleus, showed normal cdk-mediated hyperphosphorylation in vivo, exhibited a binding pattern to simian virus 40 large T antigen using a quantitative yeast two-hybrid assay that was intermediate between classic mutants (null) and wild-type RB, and had absent E2F1 binding in vitro. A third, low-penetrant allele, “deletion of RB exon 4,” showed minimal hyperphosphorylation in vivo but demonstrated detectable E2F1 binding in vitro. In addition, each low-penetrant RB mutant retained the ability to suppress colony growth of RB(−) tumor cells. These findings suggest two categories of mutant, low-penetrant RB alleles. Class 1 alleles correspond to promoter mutations, which are believed to result in reduced or deregulated levels of wild-type RB protein, whereas class 2 alleles result in mutant proteins that retain partial activity. Characterization of the different subtypes of class 2 low-penetrant genes may help to define more precisely functional domains within the RB product required for tumor suppression.
Resumo:
The influenza C virus CM2 protein is a small glycosylated integral membrane protein (115 residues) that spans the membrane once and contains a cleavable signal sequence at its N terminus. The coding region for CM2 (CM2 ORF) is located at the C terminus of the 342-amino acid (aa) ORF of a colinear mRNA transcript derived from influenza C virus RNA segment 6. Splicing of the colinear transcript introduces a translational stop codon into the ORF and the spliced mRNA encodes the viral matrix protein (CM1) (242 aa). The mechanism of CM2 translation was investigated by using in vitro and in vivo translation of RNA transcripts. It was found that the colinear mRNA derived from influenza C virus RNA segment 6 serves as the mRNA for CM2. Furthermore, CM2 translation does not depend on any of the three in-frame methionine residues located at the beginning of CM2 ORF. Rather, CM2 is a proteolytic cleavage product of the p42 protein product encoded by the colinear mRNA: a cleavage event that involves the recognition and cleavage of an internal signal peptide presumably by signal peptidase resident in the endoplasmic reticulum. Alteration of the predicted signal peptidase cleavage site by mutagenesis blocked generation of CM2. The other polypeptide species resulting from the cleavage of p42, designated p31, contains the CM1 coding region and an additional C-terminal 17 aa (formerly the CM2 signal peptide). Protein p31, in comparison to CM1, displays characteristics of an integral membrane protein.
Resumo:
The PRNP polymorphic (methionine/valine) codon 129 genotype influences the phenotypic features of transmissible spongiform encephalopathy. All tested cases of new variant Creutzfeldt–Jakob disease (nvCJD) have been homozygous for methionine, and it is conjectural whether different genotypes, if they appear, might have distinctive phenotypes and implications for the future “epidemic curve” of nvCJD. Genotype-phenotype studies of kuru, the only other orally transmitted transmissible spongiform encephalopathy, might be instructive in predicting the answers to these questions. We therefore extracted DNA from blood clots or sera from 92 kuru patients, and analyzed their codon 129 PRNP genotypes with respect to the age at onset and duration of illness and, in nine cases, to detailed clinical and neuropathology data. Homozygosity at codon 129 (particularly for methionine) was associated with an earlier age at onset and a shorter duration of illness than was heterozygosity, but other clinical characteristics were similar for all genotypes. In the nine neuropathologically examined cases, the presence of histologically recognizable plaques was limited to cases carrying at least one methionine allele (three homozygotes and one heterozygote). If nvCJD behaves like kuru, future cases (with longer incubation periods) may begin to occur in older individuals with heterozygous codon 129 genotypes and signal a maturing evolution of the nvCJD “epidemic.” The clinical phenotype of such cases should be similar to that of homozygous cases, but may have less (or at least less readily identified) amyloid plaque formation.