1000 resultados para CU-O SUPERCONDUCTOR
Resumo:
The study aimed to develop an economical, rational and easy method of constructing ferrocement tank suitable for P. monodon maturation.
Resumo:
Trace elements associated with organic subfractions (humic, fulvic, and non-humic substances) were identified for seven core sediments from Lake Mariut, Egypt. Results indicated that the amounts of trace metals in humic acid and non-humic substances decreased in the following order: Zn>Cu>Pb>Cr>Cd, while in fulvic acid the order the order was Cu>Zn>Pb>Cr>Cd. There is a higher contribution of Zn, Pb, Cu and Cr in humic acid compared to fulvic acid in most samples. Slight changes in the amounts of cadmium bounded with humic and fulvic acids was also found.
Resumo:
Surface- and bottom-water samples were collected from October 1996 to August 1997 to study levels of iron, copper, and cadmium species in their dissolved labile as well as non-labile and particulate forms in the waters of El-Mex Bay. The results showed that the non-labile concentration of the metals was generally more abundant than that of the labile form: its content reached more than 90% of the total dissolved metal for Cu and more than 80% for Fe. The particulate form was almost at the level of the labile form. The annual concentration of the trace metals of the labile form was 13 µglˉ¹ for Fe; 3µglˉ¹ for Cu, and 1.2 µglˉ¹ for Cd in the surface- and bottom-waters.
Resumo:
In this paper, the authors investigate the electromagnetic properties of stacks of high temperature superconductor (HTS) coated conductors with a particular focus on calculating the total transport AC loss. The cross-section of superconducting cables and coils is often modeled as a two-dimensional stack of coated conductors, and these stacks can be used to estimate the AC loss of a practical device. This paper uses a symmetric two dimensional (2D) finite element model based on the H formulation, and a detailed investigation into the effects of a magnetic substrate on the transport AC loss of a stack is presented. The number of coated conductors in each stack is varied from 1 to 150, and three types of substrate are compared: non-magnetic weakly magnetic and strongly magnetic. The non-magnetic substrate model is comparable with results from existing models for the limiting cases of a single tape (Norris) and an infinite stack (Clem). The presence of a magnetic substrate increases the total AC loss of the stack, due to an increased localized magnetic flux density, and the stronger the magnetic material, the further the flux penetrates into the stack overall. The AC loss is calculated for certain tapes within the stack, and the differences and similarities between the losses throughout the stack are explained using the magnetic flux penetration and current density distributions in those tapes. The ferromagnetic loss of the substrate itself is found to be negligible in most cases, except for small magnitudes of current. Applying these findings to practical applications, where AC transport current is involved, superconducting coils should be wound where possible using coated conductors with a non-magnetic substrate to reduce the total AC loss in the coil. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Simulation studies were conducted on the magnetization of (RE)BCO (RE-Ba-Cu-O, where RE represents a rare earth element) bulk superconductors using various split-coil arrangements by solving the critical state equation using the commercial software FlexPDE. A pair of coaxial coils of identical size is identified as an optimum arrangement for practical magnetization at 77K by the zero-field cooling technique. In general, the magnetization process is likely to be most effective when the outer radius of the coils lies between 100% and 50% of the sample radius. A relatively large coil pair is necessary for samples with either a smaller aspect ratio or larger values of J c0. Two different regimes of flux penetration are found to be involved in the magnetization process. For a sufficiently small sample, the penetration field is determined by flux propagation from beneath the coil to the centre of the sample; for a sufficiently large sample, the definitive propagation route is from beneath the coil to the periphery of the sample. Effective split-coil magnetization occurs only in the former regime, and both penetration regimes are completely different from that involved in the solenoidal-coil magnetization process. © 2012 IOP Publishing Ltd.
Resumo:
在自然条件下,采用人工模拟水缸培养方法,研究了湖泊底泥不同Cu、Cd处理对沉水植物伊乐藻生长、叶绿素含量以及Cu、Cd吸收和积累的影响。结果表明,较低浓度Cu刺激伊乐藻的生长(生物量、叶绿素),高浓度抑制伊乐藻的生长;随着Cd处理浓度的增加,伊乐藻的生物量、叶绿素含量均一直降低,在底泥Cd含量为168.69mg·kg-1DW(含背景值)时,植株出现死亡。随着Cu处理浓度的增加,伊乐藻体内的Cu含量一直增加,在底泥Cu含量为414mg·kg-1DW(含背景值)时,根部、叶部的富集系数均达到最大(0.21和0
Resumo:
A systematic study of the parameter space of graphene chemical vapor deposition (CVD) on polycrystalline Cu foils is presented, aiming at a more fundamental process rationale in particular regarding the choice of carbon precursor and mitigation of Cu sublimation. CH 4 as precursor requires H 2 dilution and temperatures ≥1000 °C to keep the Cu surface reduced and yield a high-quality, complete monolayer graphene coverage. The H 2 atmosphere etches as-grown graphene; hence, maintaining a balanced CH 4/H 2 ratio is critical. Such balance is more easily achieved at low-pressure conditions, at which however Cu sublimation reaches deleterious levels. In contrast, C 6H 6 as precursor requires no reactive diluent and consistently gives similar graphene quality at 100-150 °C lower temperatures. The lower process temperature and more robust processing conditions allow the problem of Cu sublimation to be effectively addressed. Graphene formation is not inherently self-limited to a monolayer for any of the precursors. Rather, the higher the supplied carbon chemical potential, the higher the likelihood of film inhomogeneity and primary and secondary multilayer graphene nucleation. For the latter, domain boundaries of the inherently polycrystalline CVD graphene offer pathways for a continued carbon supply to the catalyst. Graphene formation is significantly affected by the Cu crystallography; i.e., the evolution of microstructure and texture of the catalyst template form an integral part of the CVD process. © 2012 American Chemical Society.
Resumo:
通过测定植物的丙二醛(MDA)含量、酸溶性SH含量以及两种抗氧化酶(超氧化物歧化酶SOD和愈创木酚过氧化物酶GPX)的酶活,研究了重金属镉(Cd)和铜(Cu)对美人蕉(Cannaindica Linn.)的氧化胁迫。结果表明,20μmol·L~(-1)和100μmol·L~(-1)的Cd~(2+)和Cu~(2+)均使其根部MDA含量显著增加,但除了100μmol·L~(-1)的Cd~(2+),叶部MDA含量无明显变化。与Cu~(2+)相比,Cd~(2+)能引起植物根部GSH的明显提高,并能诱导PCs的产生
Resumo:
Various MgB2 wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB2 wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 °C for a hold time of 20-40min. Current limiting properties of MgB2 wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50Hz. The quench currents extracted from the pulse measurements were in a range of 200-328A for different samples, corresponding to an average engineering critical current density (Je) of around 4.8 × 10 4Acm-2 at 25K in the self-field, based on the 1νVcm-1 criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB2 wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB2 wires. © IOP Publishing Ltd.
Resumo:
目的克隆猪囊尾蚴胞质含铜/锌的超氧化物歧化酶基因(Cu/ZnSOD),并比较其与其它寄生蠕虫相应基因结构的相似性。方法通过获取其它生物Cu/ZnSOD基因的保守区域,设计保守引物,用于扩增该寄生虫的Cu/ZnSOD基因。结果Cu/ZnSOD基因编码一15.6kDa的蛋白,该蛋白的推导序列中含有这类酶的活性和二级结构所需要的所有保守的氨基酸残基,并且与其它寄生虫的相应序列有高达70.6%的相似度。抑制剂研究试验表明所克隆的SOD属于Cu/ZnSOD,该蛋白在大肠杆菌中得以成功表达,表达产物具有SOD活性。免
Resumo:
An improved technique for transferring large area graphene grown by chemical vapor deposition on copper is presented. It is based on mechanical separation of the graphene/copper by H2 bubbles during H2O electrolysis, which only takes a few tens of seconds while leaving the copper cathode intact. A semi-rigid plastic frame in combination with thin polymer layer span on graphene gives a convenient way of handling- and avoiding wrinkles and holes in graphene. Optical and electrical characterizations prove the graphene quality is better than that obtained by traditional wet etching transfer. This technique appears to be highly reproducible and cost efficient. © 2013 American Institute of Physics.
Resumo:
研究了不同浓度的Cu2+(0.01,0.1,1,10,50,100,200mg/L)对绿球藻(Chlorococcumsp.)生长、形态结构及生理特性的影响.结果表明,Cu2+对绿球藻的显微结构、生长及生理状态的影响比较显著.与对照BG11培养的绿球藻比较,0.01~1mg/LCu2+浓度下培养的绿球藻,细胞壁无明显增厚,色素没有多大变化,但蛋白核由一个变为多个;而在高浓度(10~200mg/LCu2+)下,细胞壁明显增厚为多层,色素减少,蛋白核减少并回复到1个或消失.低浓度Cu2+(0.01,0.1mg