692 resultados para CONDUCTIVE POLYIMIDE ELECTROLYTES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A conductive and electrochemically active composite material has been prepared by the combination of bentonite and nickel hydroxide precursor sol. This material exhibits the characteristic intercalation properties of the clay component and the electrochemical and optical properties of nickel hydroxide. The clay particles seem to induce the aggregation of nickel hydroxide, leading to the formation of a layer of alpha-Ni(OH)(2) exhibiting needle like morphology. The composite forms stable films and has been conveniently used for the preparation of modified electrodes exhibiting intercalation and electrochemical properties, thus providing an interesting material for the development of amperometric sensors. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper hexacyanoferrate nanoparticles of about 30 nm in size have been prepared by the sonochemical irradiation of a mixture of aqueous potassium ferricyanide and copper chloride solutions. The nanoparticles were immobilized onto fluorine doped tin oxide (FTO) electrodes by using the electrostatic deposition layer-by-layer technique (LbL), obtaining electroactive films with electrocatalytic properties towards H2O2 reduction, providing higher currents than those observed for electrodeposited bulk material, even in electrolytes containing NH4+, Na+ and K+. The nanoparticles assembly was used as mediator in a glucose biosensor by immobilizing glucose oxidase enzyme by both, cross-linking and LbL. techniques. Sensitivities obtained were dependent on the immobilization method ranging from 1.23 mu A mmol(-1) L cm(-2) for crosslinking to 0.47 mu A mmol(-1) L cm(-2) for LbL; these values being of the same order than those obtained with electrodes where the amount of enzyme used is much higher. Moreover, the linear concentration range where the biosensors can operate was 10 times higher for electrodes prepared with the LbL immobilization method than with the conventional crosslinking one. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, nanocomposites of polyaniline (PANI) and layered alpha-Zr(HPO4)(2).H2O (alpha-ZrP) were prepared using two different approaches: (i) the in situ aniline polymerization in the presence of the layered inorganic material and (ii) the layer-by-layer (LBL) assembly using an aqueous solution of the polycation emeraldine salt (ES-PANI) and a dispersion of exfoliated negative slabs of alpha-ZrP. These materials were characterized spectroscopically using mainly resonance Raman scattering at four exciting radiations and electronic absorption in the UV-VIS-NIR region. Structural and textural characterizations were carried out using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The polymer obtained by the in situ aniline polymerization is located primarily in the external surface of the inorganic material although aniline monomers were intercalated between alpha-ZrP interlayer regions before oxidative polymerization. Through resonance Raman spectroscopy, it was observed that the formed polymer has semiquinone units (ES-PANI) and also azo bonds (-N = N-), showing that this method results in a polymer with a different structure from the usual ""head-to-tail"" ES-PANI. The LBL assembly of pre-formed ES-PANI and exfoliated alpha-ZrP particles produces homogeneous films with reproducible deposition from layer to layer, up to 20 bilayers. Resonance Raman (lambda(0) = 632.8 nm) spectrum of PANI/ZrP LBL film shows an enhancement in the intensity of the polaronic band at 1333 cm(-1) (nu C-N center dot+) and the decrease of the band intensity at 1485 cm(-1) compared to bulk ES-PANI. Its UV-VIS-NIR spectrum presents an absorption tail in the NIR region assigned to delocalized free charge carrier. These spectroscopic features are characteristic of highly conductive secondary doped PANI suggesting that polymeric chains in PANI/ZrP LBL film have a more extended conformation than in bulk ES-PANI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric electroactive blends formed by electropolymerized aniline inside a non-conductive polyacrylamide porous matrix were already shown as suitable materials for the electrocontrolled release of model compounds like safranin. In this paper the intermolecular interactions between the two components of the blend are put in evidence by Raman spectroscopy measurements. Also, in situ optical microscopy was used to follow changes occurring in the polyaniline/polyacrylamide blend during pyrocathecol violet release tests. These two sets of experiments show the possibility of controlling electrochemically the release of both, safranin (a cation) and pyrocathecol violet (an anion) and allow to infer a release mechanism based on the electromechanical properties of the blends explaining the dependence of the release kinetics on the applied potential. Tetracycline release curves for different potentials and pHs are shown and the obtained profiles are in agreement with those expected for a device acting as an electrochemically driven pump due to the artificial muscle properties of the conducting phase of the blends. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although alkyl carbonic acids (ACAs) and their salts are referred to as instable species in aqueous medium, we demonstrate that a monoalkyl carbonate (MAC) can in fact be easily formed from bicarbonate and an alcohol even in the presence of a high amount of water. A CE system with two capacitively coupled contactless conductivity detectors (C(4)Ds) was used to obtain different parameters about these species and their reactions. Based on the mobilities obtained for a series of alcohols ranging from 1 to 5 carbons, the coefficients of diffusion and the hydrodynamic radii were calculated. When compared with the equivalent carboxylates, MACs have radii systematically smaller. Although the precise pK(a) values of the ACAs could not be obtained, because of the fast decomposition in acid medium, it was possible, for the first time, to show that they are below 4.0. This result suggests that the acidity of an ACA is quite similar to the first hydrogen of H(2)CO(3). Using a new approach to indirectly calibrate the C(4)D, the kinetic constants and the equilibrium constants of formation were also obtained. The results suggest that the increase in the chain length makes the MACs less stable and more inert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop a fast capillary electrophoresis method for the determination of inorganic cations (Na(+), K(+), Ca(2+), Mg(2+)) in biodiesel samples, using barium (Ba(2+)) as the internal standard. The running electrolyte was optimized through effective mobility curves in order to select the co-ion and Peakmaster software was used to determine electromigration dispersion and buffer capacity. The optimum background electrolyte was composed of 10 mmol L(-1) imidazole and 40 mmol L(-1) of acetic acid. Separation was conducted in a fused-silica capillary (32 cm total length and 23.5 cm effective length, 50 mu m I.D.), with indirect UV detection at 214 nm. The migration time was only 36 s. In order to obtain the optimized conditions for extraction, a fractional factorial experimental design was used. The variables investigated were biodiesel mass, pH, extractant volume, agitation and sonication time. The optimum conditions were: biodiesel mass of 200 mg, extractant volume of 200 mu L. and agitation of 20 min. The method is characterized by good linearity in the concentration range of 0.5-20 mg kg(-1) (r > 0.999), limit of detection was equal to 0.3 mg kg(-1), inter-day precision was equal to 1.88% and recovery in the range of 88.0-120%. The developed method was successfully applied to the determination of cations in biodiesel samples. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photopolymerized sol-gel monolithic columns for use in capillary electrochromatography were prepared in 125 mu m i.d. polyacrylate-coated fused-silica capillaries. The polyacrylate-coating, unlike the polyimide one, is transparent to the radiation used (approximate to 370 nm), and thus, no coating removal is necessary. This is a very important particularity since intrinsic capillary column characteristics, such as flexibility and mechanical resistance, are unchanged. A mixture containing metacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photoinitiator was irradiated at 370 nm for 20 min inside the capillaries to prepare the columns through sol-gel approach. The versatility and viability of the use of polyacrilate as a new capillary external coating were shown through preparation of two columns under different conditions, which were tested in electrochromatography for separation of standard mixture containing thiourea (marker compound), propylbenzene, phenanthrene and pyrene. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

6 x 8cm(2) electrochromic devices (ECDs) with the configuration K-glass/EC-layer/electrotype/ion-storage (IS) layer/K-glass, have been assembled using Nb2O5:Mo EC layers, a (CeO2)(0.81)-TiO2 IS-layer and a new gelatin electrolyte containing Li+ ions. The structure of the electrolyte is X-ray amorphous. Its ionic conductivity passed by a maximum of 1.5 x 10(-5) S/CM for a lithium concentration of 0.3g/15ml. The value increases with temperature and follows an Arrhenius law with an activation energy of 49.5 kJ/mol. All solid-state devices show a reversible gray coloration, a long-term stability of more than 25,000 switching cycles (+/- 2.0 V/90 s), a transmission change at 550 nm between 60% (bleached state) and 40% (colored state) corresponding to a change of the optical density (Delta OD = 0. 15) with a coloration efficiency increasing from 10cm(2)/C (initial cycle) to 23cm(2)/C (25,000th cycle). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton-conducting gel polymer electrolytes based on gelatin plasticized with glycerol and containing acetic acid were investigated, characterized, and applied to electrochromic window. For glycerol contents varying from 7% to 48%, the conductivity of the uniform and predominantly amorphous gel electrolyte was found to follow a Vogel-Tamman-Fulcher behavior with the temperature. Typically, for the electrolyte chosen to make 7 x 2 cm(2) electrochromic smart window with the configuration: glass/fluor-doped tin oxide (FTO)/WO(3)/gelatin electrolyte/CeO(2)-TiO(2)/FTO/glass and containing 28% of glycerol, the conductivities were found to be of the order of 5 x 10(-5) S/cm at room temperature and 3.6 x 10(-4) S/cm at 80 A degrees C. The device was characterized by spectroelectrochemical techniques and was tested up to 10,000 cycles showing a fast coloring/bleaching behavior, where the coloring process was achieved in 10 s and the bleaching in 2 s. The transmission variation at the wavelength of 550 nm was about 15%. The cyclic voltammograms showed a very good reversibility of the cathodic/anodic processes, and the charge density was about 3.5 mC/cm(2). The memory tests showed that the transmittance in the colored state increased by 8% in 90 min after removing the potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface of ramie cellulose whiskers has been chemically modified by grafting organic acid chlorides presenting different lengths of the aliphatic chain by an esterification reaction. The occurrence of the chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies, elemental analysis and contact angle measurements. The crystallinity of the particles was not altered by the chain grafting, but it was shown that covalently grafted chains were able to crystallize at the cellulose surface when using C18. Both unmodified and functionalized nanoparticles were extruded with low density polyethylene to prepare nanocomposite materials. The homogeneity of the ensuing nanocomposites was found to increase with the length of the grafted chains. The thermomechanical properties of processed nanocomposites were studied by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA) and tensile tests. A significant improvement in terms of elongation at break was observed when sufficiently long chains were grafted on the surface of the nanoparticles. It was ascribed to improved dispersion of the nanoparticles within the LDPE matrix. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative study of two different conductive carbon-black pigments, Vulcan XC-72 R and Printex L6, for the electrogeneration of hydrogen peroxide (H(2)O(2)) by reducing dissolved oxygen in an alkaline solution was performed. The materials were physically characterized by X-ray diffraction (XRD), Fourier transform infrared attenuated total reflection (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). XRD shows the presence of SO(2) and ATR-FTIR technique indicates a difference in NO and SO(2) functional groups between the two carbon pigments. XPS indicated presence of SO and NO and more oxygenated acid species on Printex L6. A rotating ring-disk electrode was used for electrochemical analysis of the oxygen reduction reaction (ORR). The results showed that the Printex L6 was better than Vulcan XC-72 R for H(2)O(2) production. Results also indicate that the number of electrons transferred in the ORR for Printex L6 and Vulcan XC-72 R were 2.2 and 2.9, respectively, while the percentages of H(2)O(2) formed were 88% and 51%. Scanning electrochemistry microscopy images confirmed the higher amount of H(2)O(2) formed in the Printex L6 pigment. Printex L6 was shown to be a more promising for H(2)O(2) production than Vulcan XC-72 R, while the latter was shown to have more potential for fuel cells. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to investigate the most common phonetic and phonological difficulties in the teaching of Spanish as a foreign language. The study has been based on the following questions: Which difficulties can teachers encounter when teaching phonetics and phonology? Which difficulties can students encounter when learning phonetics and phonology? How is phonetics and phonology taught? In order to be able to investigate the difficulties, a questionnaire has been handed out to five experienced teachers. The results of the questionnaires, together with the theory, has been analysed in the analysis. The outcome of the analysis shows that several difficulties can be detected in both the teaching and in the learning process. The results of the questionnaires also show us that the teachers mostly teach phonetics the same way: through repetition and imitation, the conductive method, and very few think outside of the box to encounter new methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uma nova rede de polímeros interpenetrantes (IPN) baseada em poliuretana de óleo de mamona e poli(etileno glicol) e poli(metacrilato de metila) foi preparada para ser utilizada como eletrólito polimérico. Os seguintes parâmetros de polimerização foram avaliados: massa molecular do poli(etileno glicol) (PEG), concentração de PEG e concentração de metacrilato de metila. As membranas de IPN foram caracterizadas por calorimetria diferencial de varredura (DSC) e espectroscopia de infravermelho por transformada de Fourier (FT-IR). Os eletrólitos de redes de polímeros interpenetrantes (IPNE) foram preparados a partir da dopagem com sal de lítio através do inchamento numa solução de 10% em massa de LiClO4 na mistura de carbonato de etileno e carbonato de propileno na razão mássica de 50:50. As IPNEs foram caracterizadas por espectroscopia de impedância eletroquímica e Raman. As IPNEs foram testadas como eletrólito polimérico em supercapacitores. As células capacitivas foram preparadas utilizando eletrodos de polipirrol (PPy). Os valores de capacitância e eficiência foram calculados por impedância eletroquímica, voltametria cíclica e ciclos galvonostáticos de carga e descarga. Os valores de capacitância obtidos foram em torno de 90 F.g-1 e eficiência variou no intervalo de 88 a 99%. Os valores de densidade de potência foram superiores a 250 W.kg-1 enquanto que a densidade de energia variou de 10 a 33 W.h.kg-1, dependendo da composição da IPNE. As características eletroquímicas do eletrólito formado pela IPN-LiClO4 (IPNE) foram comparadas aos eletrólitos poliméricos convencionais, tais como poli(difluoreto de vinilideno)-(hexafluorpropileno) ((PVDF-HFP/LiClO4) e poliuretana comercial (Bayer desmopan 385) (PU385/LiClO4). As condutividades na temperatura ambiente foram da ordem de 10-3 S.cm-1. A capacitância da célula utilizando eletrodos de PPy com eletrólito de PVDFHFP foi de 115 F.g-1 (30 mF.cm-2) e 110 F.g-1 (25 mF.cm-2) para a célula com PU385 comparadas a 90 F.g-1 (20 mF.cm-2) para a IPNE. Os capacitores preparados com eletrólito de IPNE apresentaram valores de capacitância inferior aos demais, entretanto provaram ser mais estáveis e mais resistentes aos ciclos de carga/descarga. A interpenetração de duas redes poliméricas, PU e PMMA produziu um eletrólito com boa estabilidade mecânica e elétrica. Um protótipo de supercapacitor de estado sólido foi produzindo utilizando eletrodos impressos de carbono ativado (PCE) e o eletrólito polimérico de IPNE. A técnica de impressão de carbono possui várias vantagens em relação aos outros métodos de manufatura de eletrodos de carbono, pois a área do eletrodo, espessura e composição são variáveis que podem ser controladas experimentalmente. As células apresentaram uma larga janela eletroquímica (4V) e valores da capacitância da ordem de 113 mF.cm-2 (16 F.g-1). Métodos alternativos de preparação do PCE investigados incluem o uso de IPNE como polímero de ligação ao carbono ativado, estes eletrodos apresentaram valores de capacitância similares aos produzidos com PVDF. A influência do número de camadas de carbono usadas na produção do PCE também foi alvo de estudo. Em relação ao eletrólito polimérico, o plastificante e o sal de lítio foram adicionados durante a síntese, formando a IPNGel. As células apresentaram alta capacitância e boa estabilidade após 4000 ciclos de carga e descarga. As membranas de IPN foram testadas também como reservatório de medicamento em sistemas de transporte transdérmico por iontoforese. Os filmes, mecanicamente estáveis, formaram géis quando inchado em soluções saturadas de lidocaina.HCl, anestésico local, em propileno glicol (PG), poli(etileno glicol) (PEG400) e suas misturas. O grau de inchamento em PG foi de 15% e 35% em PEG400. Agentes químicos de penetração foram utilizados para diminuir a resistência da barreira causada pela pele, dentre eles o próprio PG, a 2-pirrolidinona (E1) e a 1-dodecil-2-pirrolidinona (E2). Os géis foram caracterizados por espectroscopia de impedância eletroquímica e transporte passivo e por iontoforese através de uma membrana artificial (celofane). O sistema IPN/ lidocaina.HCl apresentou uma correlação linear entre medicamento liberado e a corrente aplicada. Os melhores resultados de transporte de medicamento foram obtidos utilizando o PG como solvente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation