925 resultados para COMPATIBLE POLYMER BLENDS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conditions for processing and doping of blends of poly(o-alkoxyaniline)s and poly(vinylidene fluoride) were investigated. Flexible, free-standing and stretchable films of blends of various compositions were obtained by casting. A low percolation threshold was observed with the onset of conductivity at low polyalkoxyaniline contents (i.e. 5%). Interestingly, these blends displayed electrochromism with colour changes similar to those of the parent conducting polymer, as observed from cyclic voltammetry measurements. This behaviour is seen even for low contents of the conducting polymer, indicating that a continuous conducting pathway, which is capable of exchanging charge, is formed within the insulating matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends possessing the elastomeric properties of natural rubber (NR) and the conducting properties of conducting polymer (polyaniline, PANI) were obtained, which are promising for further application in deformation sensors. Blends containing 20% (v/v) of PANI in 80% of NR latex were fabricated by casting in the form of free-standing films and treated either with HCl or with corona discharge, which lead PANI to its conducting state (doping process). Characterization was carried out by Raman spectroscopy, d.c. conductivity and thermogravimetric analysis. Evidence for chemical interaction between PANI and NR was observed, which allowed the conclusion that the NR latex itself is able partially to induce both the primary doping of PANI (by protonation) and the secondary doping of PANI (by changing the chain conformation). Further improvement in the primary doping could be obtained for the blends either by corona discharge or by exposing them to HCl the electrical conductivity reached in the blends was dependent on the doping conditions used, as observed by Raman scattering. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of poly(o-methoxyaniline) - POMA - and poly(vinylidene fluoride) - PVDF - of various compositions were prepared from organic solvent solutions. Flexible, free-standing and stretchable films were obtained by casting, which were characterized by conductivity measurements, electron microscopy and differential scanning calorimetry. As expected, the blends conductivity increases with increasing contents of the conducting polymer. The onset of the conductivity at low contents of conducting polymer indicates a low percolation threshold for the blends. Despite the presence of the conductive host, the blends displayed the crystalline spherulitic morphology and the beta-phase characteristic of pure PVDF. This morphology appears to be destroyed, however, if the film is stretched by zone-drawing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with Europium (III) acetylacetonate [Eu(acac)(3)], have been studied by photoacoustic spectroscopy (PAS) and photoluminescent (PL) spectroscopy. Emission and excitation spectra, excited state decay times, and quantum efficiency have been evaluated as well. PAS studies evidenced chemical interactions between the Europium complex and the PC/PMMA blend, which presented typical percolation threshold behavior regarding the Eu3+ content. PL spectra evidenced the photoluminescence of the Eu3+ incorporated into the blend. Photoluminescence property enhancement was observed for the composite in comparison with the precursor compound. Optimized emission quantum efficiency was observed for the 60/40 blend doped with 2% and 4% Europium (III) acetylacetonate. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (24, 48, and 96 h) and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (H-1 NMR) spectroscopy, and scanning electron microscopy (SEM). PVA films show a loss of thermal stability due to irradiation. PVA/KLD reveals greater thermal stability than PVA and an increase in thermal stability after irradiation. These results suggest that the incorporation of KLD into PVA provides a gain in thermal and photochemical stability. FTIR, H-1 NMR, DSC, and TG results obtained for the blends suggest that intermolecular interactions between PVA and KLD chains are present. SEM micrographs revealed blend miscibility for a KLD blend content of up to 15 wt%, as observed at magnification of 1000 times. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytotoxicity and subcutaneous tissue reaction of innovative blends composed by polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene associated with natural polymers (natural rubber and native starch) forming membranes were evaluated, aiming its applications associated with bone regeneration. Cytotoxicity was evaluated in mouse fibroblasts culture cells (NIH3T3) using trypan blue staining. Tissue response was in vivo evaluated by subcutaneous implantation of materials in rats, taking into account the presence of necrosis and connective tissue capsule around implanted materials after 7, 14, 21, 28, 35, 60, and 100 days of surgery. The pattern of inflammation was evaluated by histomorphometry of the inflammatory cells. Chemical and morphological changes of implanted materials after 60 and 100 days were evaluated by Fourier transform infrared (FTIR) absorption spectroscopy and scanning electron microscopy (SEM) images. Cytotoxicity tests indicated a good tolerance of the cells to the biomaterial. The in vivo tissue response of all studied materials showed normal inflammatory pattern, characterized by a reduction of polymorphonuclear leukocytes and an increase in mononuclear leukocytes over the time (p < 0.05 Kruskal-Wallis). On day 60, microscopic analysis showed regression of the chronic inflammatory process around all materials. FTIR showed no changes in chemical composition of materials due to implantation, whereas SEM demonstrated the delivery of starch in the medium. Therefore, the results of the tests performed in vitro and in vivo show that the innovative blends can further be used as biomaterials. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 1284-1293, 2013. Copyright © 2013 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we systematically investigated how the solvent composition used for polymer dissolution affects the porous structures of spin-coated polymers films. Cellulose acetate butyrate (CAB) and poly(methylmethacrylate) with low(PMMA-L) and high (PMMA-H) molecular weights were dissolved in mixtures of acetone (AC) and ethyl acetate (EA) at constant polymer concentration of 10 g/L The films were spin-coated at a relative air humidity of 55+/-5%, their thickness and index of refraction were determined by means of ellipsometry and their morphology was analyzed by atomic force microscopy. The dimensions and frequency of nanocavities on polymer films increased with the acetone content (phi(AC)) in the solvent mixture and decreased with increasing polymer molecular weight. Consequently, as the void content increased in the films, their apparent thicknesses increased and their indices of refraction decreased, creating low-cost anti-reflection surface. The void depth was larger for PMMA-L than for CAB. This effect was attributed to different activities of EA and AC in CAB or PMMA-L solution, the larger mobility of chains and the lower polarity of PMMA-L in comparison to CAB. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1: 1 and 1: 3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100 degrees C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80 degrees C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1: 3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R-2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the effect of blend composition and previous photodegradation on the biodegradation of polypropylene/ poly(3-hydroxybutyrate) (PP/PHB) blends was studied. The individual polymers and blends with or without the addition of poly(ethylene-co-methyl acrylate- co-glycidyl methacrylate) [P(E-MA-GMA)] as a compatibilizer (in the case of 80/20 blend) were exposed to UV light for 4 weeks and their biodegradation was evaluated. The biodegradation of PHB phase within the blends was hindered as PHB was the dispersed phase and PP fibrous particles were observed at the surface of the blend samples after biodegradation. Previous photodegradation lessened PHB biodegradation but enhanced the biodegradation of PP and the blends within the biodegradation time studied. Photodegradation resulted in cracks at the surface of PP and the blends, which probably facilitated the biotic reactions due to an easier access of the enzymes to deeper polymer layers. It also resulted in a decrease of molecular weight of PP phase and formation of carbonyl and hydroxyl groups which were consumed during biodegradation. Size exclusion chromatography analysis revealed that only the short chains of PP were consumed during biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imidazolium types of ionic liquids were immobilized by tethering it to acrylate backbone. These imidazolium salt containing acrylate monomers were polymerize at 70oC by free radical polymerization to give polymers poly(AcIm-n) with n being the side chain lenght. The chemical structure of the polymer electrolytes obtained by the described synthetic routes was investigated by NMR-spectroscopy. The polymers were doped with various amounts of H3PO4 and LiN(SO2CF3)2, to obtain poly(AcIm-n) x H3PO4 and poly(AcIm-2-Li) x LiN(SO2CF3)2. The TG curves show that the polymer electrolytes are thermally stable up to about 200◦C. DSC results indicates the softening effect of the length of the spacers (n) as well as phosphoric acid. The proton conductivity of the samples increase with x and reaches to 10-2 Scm-1 at 120oC for both poly(AcIm-2)2H3PO4 and poly(AcIm-6)2H3PO4. It was observed that the lithium ion conductivity of the poly(AcIm-2-Li) x LiN(SO2CF3)2 increases with blends (x) up to certain composition and then leveled off independently from blend content. The conductivity reaches to about 10-5 S cm-1 at 30oC and 10-3 at 100oC for poly(AcIm-2-Li) x LiN(SO2CF3)2 where x is 10. The phosphate and phosphoric acid functionality in the resulting polymers, poly(AcIm-n) x H3PO4, undergoes condensation leading to the formation of cross-linked materials at elevated temperature which may improve the mechanical properties to be used as membrane materials in fuel cells. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to obtain information about hydrogen bonding in solids. The low Tg enhances molecular mobility and this leads to better resolved resonances in both the backbone region and side chain region. The mobile and immobile protons can be distinguished by comparing 1H MAS and 1H-DQF NMR spectra. The interaction of the protons which may contribute to the conductivity is observed from the 2D double quantum correlation (DQC) spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the investigation of charge generation and recombination processes in three different polymer:fullerene photovoltaic blends by means of ultrafast time-resolved optical spectroscopy. The first donor polymer, namely poly[N-11"-henicosanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT), is a mid-bandgap polymer, the other two materials are the low-bandgap donor polymers poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole) (PCPDTBT) and poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT). Despite their broader absorption, the low-bandgap polymers do not show enhanced photovoltaic efficiencies compared to the mid-bandgap system.rnrnTransient absorption spectroscopy revealed that energetic disorder plays an important role in the photophysics of PCDTBT, and that in a blend with PCBM geminate losses are small. The photophysics of the low-bandgap system PCPDTBT were strongly altered by adding a high boiling point cosolvent to the polymer:fullerene blend due to a partial demixing of the materials. We observed an increase in device performance together with a reduction of geminate recombination upon addition of the cosolvent. By applying model-free multi-variate curve resolution to the spectroscopic data, we found that fast non-geminate recombination due to polymer triplet state formation is a limiting loss channel in the low-bandgap material system PCPDTBT, whereas in PSBTBT triplet formation has a smaller impact on device performance, and thus higher efficiencies are obtained.rn