819 resultados para COBALT ALLOYS
Resumo:
Titanium alloys are among the most important and frequently used class of biomaterials. In addition to biocompatibility, it is important that an implant material present satisfactory mechanical properties that allow long term use in the body. To improve such properties, different heat treatments are used, as well as doping with oxygen. The presence of interstitial oxygen in the crystal lattice causes deformation, increases the hardness, and causes modifications in anelasticity, thereby decreasing the elastic modulus. In this study, an alloy was prepared by arc melting precursor metals, heat and mechanically treated, and doped with oxygen, resulting in samples with different processing conditions. In each condition, the alloy was characterised in terms of amount of oxygen, X-ray diffraction, and optical microscopy. In addition, properties of the alloy, such as hardness and elastic modulus, were analysed.
Resumo:
The Ti-15Mo-xNb system integrates a new class of titanium alloys without the presence of aluminum and vanadium, which exhibit cytotoxicity, and that have low elasticity modulus values (below 100 GPa). This occurs because these alloys have a beta structure, which is very attractive for use as biomaterials. In addition, Brazil has about 90% of the world’s resources of niobium, which is very important economically. It strategically invests in research on the development and processing of alloys containing this element. In this paper, a study of the influence of heat treatments on the structure and microstructure of the alloys of a Ti-15Mo-xNb system is presented. The results showed grain grown with heat treatment and elongated and irregular grains after lamination due to this processing. After quenching, there were no changes in the microstructure in relation to heat-treated and laminated conditions. These results corroborate the x-ray diffraction results, which showed the predominance of the β phase.
Resumo:
Ti and its alloys are widely used as biomaterials. Their main properties are excellent corrosion resistance, relatively low elastic modulus, high specific strength, and good biocompatibility. The development of new Ti alloys with properties favorable for use in the human body is desired. To this end, Ti alloys with Mo, Nb, Zr, and Ta are being developed, because these elements do not cause cytotoxicity. The presence of interstitial elements (such as oxygen and nitrogen) induces strong changes in the elastic properties of the material, which leads to hardening or softening of the alloy. By means of anelastic spectroscopy, we are able to obtain information on the diffusion of these interstitial elements present in the crystalline lattice. In this paper, the effect of oxygen on the anelastic properties of some binary Ti-based alloys was analyzed with anelastic spectroscopy. The diffusion coefficients, pre-exponential factors, and activation energies were calculated for oxygen and nitrogen in these alloys.
Resumo:
Titanium alloys have excellent biocompatibility, and combined with their low elastic modulus, become more efficient when applied in orthopedic prostheses. Samples of Ti-15Mo-Zr and Ti-15Zr-Mo system alloys were prepared using an arc-melting furnace with argon atmosphere. The chemical quantitative analysis was performed using an optical emission spectrometer with inductively coupled plasma and thermal conductivity difference. The X-ray diffractograms, allied with optical microscopy, revealed the structure and microstructure of the samples. The mechanical analysis was evaluated by Vickers microhardness measurements. The structure and microstructure of alloys were sensitive to molybdenum and zirconium concentration, presenting α′, α″ and β phases. Molybdenum proved to have greater β-stabilizer action than zirconium. Microhardness was changed with addition of molybdenum and zirconium, having Ti-15Zr-10Mo (436 ± 2 HV) and Ti-15Mo-10Zr (378 ± 4 HV) the highest values in each system.
Resumo:
A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R-C) correlates well with a proper combination of two factors, the minimum topological instability (lambda(min)) and the Delta h parameter, which depends on the average work function difference (Delta phi) and the average electron density difference (Delta n(ws)(1/3)) among the constituent elements of the alloy. A correlation coefficient (R-2) of 0.76 was found between R-c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z(C)) of alloys in the Cu-Zr system. The new criterion underestimated R-C in the Cu-Zr system, producing predicted Z(C) values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676196]
Resumo:
The structure of gold-platinum nanoparticles is heavily debated as theoretical calculations predict core-shell particles, whereas x-ray diffraction experiments frequently detect randomly mixed alloys. By calculating the structure of gold-platinum nanoparticles with diameters of up to approximate to 3.5 nm and simulating their x-ray diffraction patterns, we show that these seemingly opposing findings need not be in contradiction: Shells of gold are hardly visible in usual x-ray scattering, and the interpretation of Vegard's law is ambiguous on the nanoscale. DOI: 10.1103/PhysRevB.86.241403
Resumo:
Two Zircaloy 4-Ta alloys (14 and 55 wt.% Ta) were produced by arc-melting. The alloys were hot-rolled at 900 degrees C and heat-treated under argon atmosphere for 100 h at 700 degrees C. The alloys were analyzed by scanning electron microscopy and X-ray diffractometry. The microstructure of both rolled and heat-treated alloys is constituted of (beta Zr,Ta)-II Ta-rich precipitates dispersed in a (alpha Zr) matrix. Corrosion tests performed in boiling concentrated H2SO4 solutions showed that the Zircaloy 4-Ta alloys are more corrosion resistant than Zircaloy 4 and that the corrosion resistance increases with increasing Ta content. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Mixtures of 2-(4,5,6,7-tetrafluorobenzimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (F4BImNN) and 2-(benzi-midazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (BImNN.) crystallize as solid solutions (alloys) across a wide range of binary compositions. (F4BImNN)(x)(BImNN)((1-x)) with x < 0.8 gives orthorhombic unit cells, while x >= 0.9 gives monoclinic unit cells. In all crystalline samples, the dominant intermolecular packing is controlled by one-dimensional (1D) hydrogen-bonded chains that lead to quasi-1D ferromagnetic behavior. Magnetic analysis over 0.4-300 K indicates ordering with strong 1D ferromagnetic exchange along the chains (J/k = 12-22 K). Interchain exchange is estimated to be 33- to 150-fold weaker, based on antiferromagnetic ordered phase formation below Neel temperatures in the 0.4-1.2 K range for the various compositions. The ordering temperatures of the orthorhombic samples increase linearly as (1 - x) increases from 0.25 to 1.00. The variation is attributed to increased interchain distance corresponding to decreased interchain exchange, when more F4BImNN is added into the orthorhombic lattice. The monoclinic samples are not part of the same trend, due to the different interchain arrangement associated with the phase change.
Resumo:
When a cylinder is connected to an abutment it is expected that abutment and cylinder will be subjected to compression forces throughout their periphery because of the clamping force exerted by the screw. The deformation resultant of this compression should be measurable and uniform along the periphery of the abutment. Considering that multiple retainers connected to each other can affect the fit of a framework, as well as the use of different alloys, it is expected that the abutments will present different levels of deformation as a result of framework connection. The aim of this study was to evaluate the deformation of implant abutments after frameworks, cast either in cobalt-chromium (CoCr) or silver-palladium (AgPd) alloys, were connected. Samples (n = 5) simulating a typical mandibular cantilevered implant-supported prosthesis framework were fabricated in cobalt-chromium and silver-palladium alloys and screwed onto standard abutments positioned on a master-cast containing 5 implant replicas. Two linear strain gauges were fixed on the mesial and distal aspects of each abutment to capture deformation as the retention screws were tightened. A combination of compressive and tensile forces was observed on the abutments for both CoCr and AgPd frameworks. There was no evidence of significant differences in median abutment deformation levels for 9 of the 10 abutment aspects. Visually well-fit frameworks do not necessarily transmit load uniformly to abutments. The use of CoCr alloy for implant-supported prostheses frameworks may be as clinically acceptable as AgPd alloy.
Resumo:
The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p < 0.05). The factors "alloy" and "casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.
Resumo:
The effect of support on the properties of rhodium and cobalt-based catalysts for ethanol steam reforming was studied in this work, by comparing the use of magnesia, alumina and Mg-Al oxide (obtained from hydrotalcite) as supports. It was found that metallic rhodium particles with around 2.4-2.6 nm were formed on all supports, but Mg-Al oxide led to the narrowest particles size distribution; cobalt was supposed to be located on the support, affecting its acidity. Rhodium interacts strongly with the support in the order: alumina> Mg-Al oxide > magnesia. The magnesium-containing catalysts showed low ethene selectivity and high hydrogen selectivity while the alumina-based ones showed high ethene selectivity, assigned to the Lewis sites of alumina. The Mg-Al oxide-supported rhodium and cobalt catalyst was the most promising sample to produce hydrogen by ethanol reforming, showing the highest hydrogen yield, low ethene selectivity and high specific surface area during reaction. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]
Resumo:
In the field of organic thin films, manipulation at the nanoscale can be obtained by immobilization of different materials on platforms designed to enhance a specific property via the layer-by-layer technique. In this paper we describe the fabrication of nanostructured films containing cobalt tetrasulfonated phthalocyanine (CoTsPc) obtained through the layer-by-layer architecture and assembled with linear poly(allylamine hydrochloride) (PAH) and poly(amidoamine) dendrimer (PAMAM) polyelectrolytes. Film growth was monitored by UV-vis spectroscopy following the Q band of CoTsPc and revealed a linear growth for both systems. Fourier transform infrared (FTIR) spectroscopy showed that the driving force keeping the structure of the films was achieved upon interactions of CoTsPc sulfonic groups with protonated amine groups present in the positive polyelectrolyte. A comprehensive SPR investigation on film growth reproduced the deposition process dynamically and provided an estimation of the thicknesses of the layers. Both FTIR and SPR techniques suggested a preferential orientation of the Pc ring parallel to the substrate. The electrical conductivity of the PAH films deposited on interdigitated electrodes was found to be very sensitive to water vapor. These results point to the development of a phthalocyanine-based humidity sensor obtained from a simple thin film deposition technique, whose ability to tailor molecular organization was crucial to achieve high sensitivity.
Resumo:
Electrical resistivity measurements were performed on p-type Pb1-xEuxTe films with Eu content x = 4%, 5%, 6%, 8%, and 9%. The well-known metal-insulator transition that occurs around 5% at room temperature due to the introduction of Eu is observed, and we used the differential activation energy method to study the conduction mechanisms present in these samples. In the insulator regime (x>6%), we found that band conduction is the dominating conduction mechanism for high temperatures with carriers excitation between the valence band and the 4f levels originated from the Eu atoms. We also verified that mix conduction dominates the low temperatures region. Samples with x = 4% and 5% present a temperature dependent metal insulator transition and we found that this dependence can be related to the relation between the thermal energy k(B)T and the activation energy Delta epsilon(a). The physical description obtained through the activation energy analysis gives a new insight about the conduction mechanisms in insulating p-type Pb1-xEuxTe films and also shed some light over the influence of the 4f levels on the transport process in the insulator region. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729813]
Resumo:
Considerable effort has been made in recent years to optimize materials properties for magnetic hyperthermia applications. However, due to the complexity of the problem, several aspects pertaining to the combined influence of the different parameters involved still remain unclear. In this paper, we discuss in detail the role of the magnetic anisotropy on the specific absorption rate of cobalt-ferrite nanoparticles with diameters ranging from 3 to 14 nm. The structural characterization was carried out using x-ray diffraction and Rietveld analysis and all relevant magnetic parameters were extracted from vibrating sample magnetometry. Hyperthermia investigations were performed at 500 kHz with a sinusoidal magnetic field amplitude of up to 68 Oe. The specific absorption rate was investigated as a function of the coercive field, saturation magnetization, particle size, and magnetic anisotropy. The experimental results were also compared with theoretical predictions from the linear response theory and dynamic hysteresis simulations, where exceptional agreement was found in both cases. Our results show that the specific absorption rate has a narrow and pronounced maxima for intermediate anisotropy values. This not only highlights the importance of this parameter but also shows that in order to obtain optimum efficiency in hyperthermia applications, it is necessary to carefully tailor the materials properties during the synthesis process. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729271]