943 resultados para CANNABINOID CB1 RECEPTORS
Resumo:
1 Mechanisms of inverse agonist action at the D-2(short) dopamine receptor have been examined. 2 Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [H-3]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. 3 Competition of inverse agonists versus [H-3] NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K-i values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K-coupled and K-uncoupled were statistically different for the set of compounds tested ( ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. 4 These observations were supported by simulations of these competition experiments according to the extended ternary complex model. 5 Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [S-35]GTPγ S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. 6 These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism.
Resumo:
Bone metabolism involves a complex balance between the deposition of matrix and mineralization and resorption. There is now good evidence that dietary components and herbal products can influence these processes, particularly by inhibiting bone resorption, thus having beneficial effects on the skeleton. For example, it has been reported that a number of common vegetables, including onion, garlic and parsley, can inhibit bone resorption in ovariectomized rats. Essential oils derived from sage, rosemary, thyme and other herbs inhibit osteoclast activity in vitro and in vitro and leading to an increase in bone mineral density. Soya, a rich source of isoflavones, has shown promising results and epidemiological evidence to support a use in maintaining bone health, and various traditional herbal formulae in Chinese and Ayurvedic medicine also have demonstrable effects in pharmacological models of osteoporosis. Recently, cannabinoids have been described as having positive effects on osteoblast differentiation, and the presence of cannabinoid receptors in bone tissue indicates a more complex role in bone metabolism than previously thought. The first part of this review briefly discusses normal bone metabolism and disorders caused by its disruption, with particular reference to osteoporosis and current pharmacological treatments. The effects of natural products on bone and connective tissue are then discussed, to include items of diet, herbal extracts and food supplements, with evidence for their efficacy outlined. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Background and purpose: The phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS. Experimental approach: Effects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro. Key results: The cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB1 receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide. Conclusions and implications: We show for the first time that Delta(9)-THCV acts as a functional CB1 receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB1 receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV-and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.
Resumo:
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.
Resumo:
Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.
Resumo:
Interaction of G-protein-coupled receptors with beta-arrestins is an important step in receptor desensitization and in triggering "alternative" signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with beta-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with beta-arrestin-1-GFP or beta-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y(1) receptor stimulated with ADP strongly translocated beta-arrestin-2-YFP, whereas only a slight translocation was observed for beta-arrestin-1-GFP. The P2Y(4) receptor exhibited equally strong translocation for beta-arrestin-1-GFP and beta-arrestin-2YFP when stimulated with UTP. The P2Y(6), P2Y(11), and P2Y(12) receptor internalized only when GRK2 was additionally cotransfected, but beta-arrestin translocation was only visible for the P2Y(6) and P2Y(11) receptor. The P2Y(2) receptor showed a beta-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated beta-arrestin-1-GFP and beta-arrestin-2-YFP equally well, whereas ATP translocated beta-arrestin-1-GFP to a much lower extent than beta-arrestin2- YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y(2) receptor and beta-arrestins. Thus, the P2Y(2) receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of beta-arrestins by ATP and UTP stimulation of P2Y(2) receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with beta-arrestins.
Resumo:
Ionotropic gamma-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for rho subunit-containing GABA(C) over other GABA receptors. Exogenous application of the GABA(C)-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABA(C) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABA(A) receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABA(A)/GABA(C) pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone-Purkinje cell (IN-PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that rho subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABA(A) alpha 1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that rho subunits can form complexes with GABA(A) receptor alpha 1 subunits in the cerebellar cortex. Overall, these data suggest that rho subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN-PC synapses in the cerebellum.
Resumo:
In positron emission tomography and single photon emission computed tomography studies using D2 dopamine (DA) receptor radiotracers, a decrease in radiotracer binding potential (BP) is usually interpreted in terms of increased competition with synaptic DA. However, some data suggest that this signal may also reflect agonist (DA)-induced increases in D2 receptor (D2R) internalization, a process which would presumably also decrease the population of receptors available for binding to hydrophilic radioligands. To advance interpretation of alterations in D2 radiotracer BP, direct methods of assessment of D2R internalization are required. Here, we describe a confocal microscopy-based approach for the quantification of agonist-dependent receptor internalization. The method relies upon double-labeling of the receptors with antibodies directed against intracellular as well as extracellular epitopes. Following agonist stimulation, DA D2R internalization was quantified by differentiating, in optical cell sections, the signal due to the staining of the extracellular from intracellular epitopes of D2Rs. Receptor internalization was increased in the presence of the D2 agonists DA and bromocriptine, but not the D1 agonist SKF38393. Pretreatment with either the D2 antagonist sulpiride, or inhibitors of internalization (phenylarsine oxide and high molarity sucrose), blocked D2-agonist induced receptor internalization, thus validating this method in vitro. This approach therefore provides a direct and streamlined methodology for investigating the pharmacological and mechanistic aspects of D2R internalization, and should inform the interpretation of results from in vivo receptor imaging studies.
Resumo:
We reported previously that bone morphogenetic proteins (BMPs) potently suppress CYP17 expression and androgen production by bovine theca interna cells (TC) in vitro. In this study, real-time PCR was used to analyse gene expression in TC and granulosa cell (GC) layers from developing bovine antral follicles (1-18 mm). Abundance of mRNA transcripts for four BMPs (BMP2, BMP4, BMP6, and BMP7) and associated type I (BMPR1A, BMPR1B, ACVR1 and ACVR1B) and type II (BMPR2, ACVR2A and ACVR2B) receptors showed relatively modest, though significant, changes during follicle development. BMP2 was selectively expressed in GC, while BMP6, BMP7 and betaglycan (TGFBR3) were more abundant in TC. Abundance of betaglycan mRNA (inhibin co-receptor) in TC increased progressively (fivefold; P<0.001) as follicles grew from 1-2 to 9-10 mm. This suggests a shift in thecal responsiveness to GC-derived inhibin, produced in increasing amounts as follicles achieve dominance. This prompted us to investigate whether inhibin can function as a physiological antagonist of BMP action on bovine TC in vitro, in a manner comparable to that for activin signalling. BMP4, BMP6 and BMP7 abolished LH-induced androstenedione secretion and suppressed CYP17 mRNA >200-fold (P<0.001), while co-treatment with inhibin-A reversed the suppressive action of BMP in each case (P<0.001). Results support a physiological role for granulosa-derived inhibin as an antagonist of BMP action on thecal androgen synthesis. A shift in intrafollicular balance between thecal BMP signalling (inhibitory for androgen synthesis) and betaglycan-dependent inhibin signalling (stimulatory for androgen synthesis) accords with the physiological requirement to deliver an adequate supply of aromatase substrate to GC of developing follicles.
Resumo:
Appetite stimulation via partial agonism of cannabinoid type 1 receptors by Δ9tetrahydrocannabinol (Δ9THC) is well documented and can be modulated by non-Δ9THC phytocannabinoids. Δ9THC concentrations sufficient to elicit hyperphagia induce changes to both appetitive (reduced latency to feed) and consummatory (increased meal one size and duration) behaviours. Here, we show that a cannabis extract containing too little Δ9THC to stimulate appetite can induce hyperphagia solely by increasing appetitive behaviours. Twelve, male Lister hooded rats were presatiated before treatment with a low-Δ9THC cannabis extract (0.5, 1.0, 2.0 and 4.0 mg/kg). Hourly intake and meal pattern data were recorded and analyzed using one-way analyses of variance followed by Bonferroni post-hoc tests. The cannabis extract significantly increased food intake during the first hour of testing (at 4.0 mg/kg) and significantly reduced the latency to feed versus vehicle treatments (at doses ≥1.0 mg/kg). Meal size and duration were unaffected. These results show only the increase in appetitive behaviours, which could be attributed to non-Δ9THC phytocannabinoids in the extract rather than Δ9THC. Although further study is required to determine the constituents responsible for these effects, these results support the presence of non-Δ9THC cannabis constituent(s) that exert a stimulatory effect on appetite and likely lack the detrimental psychoactive effects of Δ9THC.
Resumo:
The hexaazamacrocycles [28](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminoethyleneiminoethylene]} and [32](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminopropyleneiminopropylene]} form stable dinuclear copper(II) complexes suitable to behave as receptors for several anionic substrates. These two receptors were used to study the binding interactions with several substrates, such as imidazole (Him) and some carboxylates [benzoate (bz−), oxalate (ox2−), malonate (mal2−), phthalate (ph2−), isophthalate (iph2−), and terephthalate (tph2−)] by spectrophotometric titrations and EPR spectroscopy in MeOH (or H2O):DMSO (1:1 v/v) solution. The largest association constant was found for ox2− with Cu2[32](DBF)2N64+, whereas for the aromatic dicarboxylate anions the binding constants follow the trend ph2− > iph2− > tph2−, i.e. decrease with the increase of the distance of the two binding sites of the substrate. On the other hand, the large blue shift of 68 nm observed by addition of Him to Cu2[32](DBF)2N64+ points out for the formation of the bridged CuimCu cascade complex, indicating this receptor as a potential sensor for the detection and determination of imidazole in solution. The X-band EPR spectra of the Cu2[28](DBF)2N64+ and Cu2[32](DBF)2N6]4+ complexes and the cascade complexes with the substrates, performed in H2O:DMSO (1:1 v/v) at 5 to 15 K, showed that the CuCu distance is slightly larger than the one found in crystal state and that this distance increases when the substrate is accommodated between the two copper centres. The crystal structure of [Cu2[28](DBF)2N6(ph)2]·CH3OH was determined by X-ray diffraction and revealed the two copper centres bridged by two ph2− anions at a Cu···Cu distance of 5.419(1) Å. Each copper centre is surrounded by three carboxylate oxygen atoms from two phthalate anions and three contiguous nitrogen atoms of the macrocycle in a pseudo octahedral coordination environment.
Cannabis sativa and the endogenous cannabinoid system: therapeutic potential for appetite regulation
Resumo:
The herb Cannabis sativa (C. sativa) has been used in China and on the Indian subcontinent for thousands of years as a medicine. However, since it was brought to the UK and then the rest of the western world in the late 19th century, its use has been a source of controversy. Indeed, its psychotropic side effects are well reported but only relatively recently has scientific endeavour begun to find valuable uses for either the whole plant or its individual components. Here, we discuss evidence describing the endocannabinoid system, its endogenous and exogenous ligands and their varied effects on feeding cycles and meal patterns. Furthermore we also critically consider the mounting evidence which suggests non‐tetrahydrocannabinol phytocannabinoids play a vital role in C. sativa‐induced feeding pattern changes. Indeed, given the wide range of phytocannabinoids present in C. sativa and their equally wide range of intra‐, inter‐ and extra‐cellular mechanisms of action, we demonstrate that non‐Δ9tetrahydrocannabinol phytocannabinoids retain an important and, as yet, untapped clinical potential.
Resumo:
BACKGROUND: Humans from an early age look longer at preferred stimuli, and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in Autism Spectrum Conditions (ASC). However, it is unknown if gaze fixation patterns have any genetic basis. In this study, we tested if variations in the cannabinoid receptor 1 (CNR1) gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, involved in processing reward, and in our previous fMRI study we found variations in CNR1 modulates the striatal response to happy (but not disgust) faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking). METHODS: 30 volunteers (13 males, 17 females) from the general population observed dynamic emotion expressions on a screen while their eye movements were recorded. They were genotyped for the identical four SNPs in the CNR1 gene tested in our earlier fMRI study. RESULTS: Two SNPs (rs806377 and rs806380) were associated with differential gaze duration for happy (but not disgust) faces. Importantly, the allelic groups associated with greater striatal response to happy faces in the fMRI study were associated with longer gaze duration for happy faces. CONCLUSIONS: These results suggest CNR1 variations modulate striatal function that underlies the perception of signals of social reward such as happy faces. This suggests CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing, such as ASC.
Resumo:
Background/Aims: In cerebral arteries, nitric oxide (NO) release plays a key role in suppressing vasomotion. Our aim was to establish the pathways affected by NO in rat middle cerebral arteries. Methods: In isolated segments of artery, isometric tension and simultaneous measurements of either smooth muscle membrane potential or intracellular [Ca 2+ ] ([Ca 2+ ] SMC ) changes were recorded. Results: In the absence of L -NAME, asynchronous propagating Ca 2+ waves were recorded that were sensitive to block with ryanodine, but not nifedipine. L -NAME stimulated pronounced vasomotion and synchronous Ca 2+ oscillations with close temporal coupling between membrane potential, tone and [Ca 2+ ] SMC . If nifedipine was applied together with L -NAME, [Ca 2+ ] SMC decreased and synchronous Ca 2+ oscillations were lost, but asynchronous propagating Ca 2+ waves persisted. Vasomotion was similarly evoked by either iberiotoxin, or by ryanodine, and to a lesser extent by ODQ. Exogenous application of NONOate stimulated endothelium-independent hyperpolarization and relaxation of either L -NAME-induced or spontaneous arterial tone. NO-evoked hyperpolarization involved activation of BK Ca channels via ryanodine receptors (RYRs), with little involvement of sGC. Further, in whole cell mode, NO inhibited current through L-type voltage-gated Ca 2+ channels (VGCC), which was independent of both voltage and sGC. Conclusion: NO exerts sGC-independent actions at RYRs and at VGCC, both of which normally suppress cerebral artery myogenic tone.