1000 resultados para CALCIUM OXIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering deals with the regeneration of tissues for bone repair, wound healing, drug delivery, etc., and a highly porous 3D artificial scaffold is required to accommodate the cells and direct their growth. We prepared 3D porous calcium phosphate ((hydroxyapatite/beta-tricalcium phosphate)/agarose, (HAp/beta-TCP)/agarose) composite scaffolds by sol-gel technique with water (WBS) and ethanol (EBS) as solvents. The crystalline phases of HAp and beta-TCP in the scaffolds were confirmed by X-ray diffraction (XRD) analysis. The EBS had reduced crystallinity and crystallite size compared to WBS. WBS and EBS revealed interconnected pores of 1 mu m and 100 nm, respectively. The swelling ratio was higher for EBS in water and phosphate buffered saline (PBS). An in vitro drug loading/release experiment was carried out on the scaffolds using gentamicin sulphate (GS) and amoxicillin (AMX). We observed initial burst release followed by sustained release from WBS and EBS. In addition, GS showed more extended release than AMX from both the scaffolds. GS and AMX loaded scaffolds showed greater efficacy against Pseudomonas than Bacillus species. WBS exhibited enhanced mechanical properties, wettability, drug loading and haemocompatibility compared to EBS. In vitro cell studies showed that over the scaffolds, MC3T3 cells attached and proliferated and there was a significant increase in live MC3T3 cells. Both scaffolds supported MC3T3 proliferation and mineralization in the absence of osteogenic differentiation supplements in media which proves the scaffolds are osteoconducive. Microporous scaffolds (WBS) could assist the bone in-growth, whereas the presence of nanopores (EBS) could enhance the degradation process. Hence, WBS and EBS could be used as scaffolds for tissue engineering and drug delivery. This is a cost effective technique to produce scaffolds of degradable 3D ceramic-polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the compositional variation-dependent phase stability of hydroxyapatite (Ca-10(PO4)(6)(OH)(2)) on doping with silver. The transformation of hydroxyapatite to (beta/alpha) tricalcium phosphate phases during sintering has been explored using Raman spectroscopy and X-ray diffraction techniques. The optical absorption spectroscopy analysis reveals the presence of Ag+ ions at low doping levels. As the doping increases, abundance of Ag particles is enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca2+ ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 mu M and 120 mu M indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 mu M and 1.7 mu M. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a alpha-helical rich protein. Calcium binding further increased the alpha-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. (C) 2015 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite being highly bioactive and biocompatible, the limitations of monolithic hydroxyapatite (HA) include extremely low fracture toughness, poor electrical conductivity. While addressing these issues, the present study demonstrates how CaTiO3 (CT) addition to HA can be utilized to obtain a combination of long crack fracture toughness (1.7 MPa m(1/2) SEVNB technique) and flexural strength of 98-155 MPa (3-point bending) and a moderate tensile strength (diametral compression) of 17-36 MPa. The enhancement in fracture resistance in spark plasma sintered HA-CT composites has been explained in reference to the observed twin morphology. TEM reveals the presence of twins in CT grains due to 1800 rotation about 101]. The measured properties along with our earlier reports on biocompatibility and electrical properties make HA-CT suitable for bone tissue engineering applications. When compared with other competing HA-based biocomposites, HA-CT composites are found to have a better combination of properties useful for medium load bearing implant applications. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of the stabilization of the turquoise-colored chrornophore (Mn5+O4) in various oxide hosts, viz., A(3)(VO4)(2) (A = Ba, Sr, Ca), YVO4, and Ba2MO4 (M = Ti, Si), has been carried out. The results reveal that substitution of Mn5+O4 occurs in Ba-3(VO4)(2) forming the entire solid solution series Ba-3(V1-x MnxO4)(2) (0 < x <= 1.0), while with the corresponding strontium derivative, only up to about 10% of Mn5+O4 substitution is possible. Ca-3(VO4)(2) and YVO4 do not stabilize Mn5+O4 at all. With Ba2MO4 (M = Ti, Si), we could prepare only partially substituted materials, Ba2M1-xMn5+O4+x/2 for x up to 0.15, that are turquoise-colored. We rationalize the results that a large stabilization of the O 2p-valence band states occurs in the presence of the electropositive barium that renders the Mn5+ oxidation state accessible in oxoanion compounds containing PO43-, VO43-, etc. By way of proof-of-concept, we synthesized new turquoise-colored Mn5+O4 materials, Ba-5(BO3)(MnO4)(2)Cl and Ba-5(BO3)(PO4)(MnO4)Cl, based on the apatite-Ba-5(PO4)(3)Cl-structure.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of SrBi2Ta2O9 and related oxides such as SrBi2Nb2O9, Bi2WO6 and Bi3Ti4O12 have been calculated by the tight-binding method. In each case, the band gap is about 4.1 eV and the band edge states occur on the Bi-O layers and consist of mixed O p/Bi s states at the top of the valence band and Bi p states at the bottom of the conduction band. The main difference between the compounds is that Nb 5d and Ti 4d states in the Nb and Ti compounds lie lower than the Ta 6d states in the conduction band. The surface pinning levels are found to pin Schottky barriers 0.8 eV below the conduction band edge.

Relevância:

20.00% 20.00%

Publicador: