964 resultados para Bridge failures.
Resumo:
Incluye Bibliografía
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
Background. Despite being functional and having aesthetic benefits, the acceptance of patients regarding the use of removable partial dentures (RPDs) has been low. In part, this is due to the deleterious effects that causes discomfort to the patient. Success depends not only on the care expended by the patient, including daily care and oral hygiene, but also on common goals set by their professional and clinical staff, aiming beyond aesthetics, to incorporate issues of functionality and the well-being of patients. Methods and results. For rehabilitation treatment with RPDs to reach the desired level of success without damaging the support structure, all the steps (diagnose, cavity preparation, adaptation of the metal structures, functional of distal extension and posterior follow-up) in the rehabilitative treatment should be carefully developed. A literature review was carried out, searching through MEDLINE (PubMed) articles published between 1965 and December 2012 including clinical trials and reviews about the use of RPDs. Conclusions. This study describes factors that lead to failures and complications in oral rehabilitation through the use of RPDs and suggests possible solutions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study analysed the effect of pastes formulated with calcium hydroxide P.A. and different vehicles (saline solution - paste A and Copaifera langsdorffii Desfon oil - paste B) on oral microorganisms and dentin bridge formation in dogs. The antimicrobial action of the pastes and their components was analysed by the minimum inhibitory concentration in agar gel technique. The components were diluted and tested on fifteen standard strains of microorganisms associated with endodontic diseases. The microorganisms were cultivated and after incubation data was analysed using One-Way ANOVA and Turkey's test (P≤0.05). Four superior incisors of ten animals were used to evaluate dentin bridge formation. Two incisors were capped with paste A (GA) and two with paste B (GB). After 90 days, the teeth were extracted for histological analysis and the degree of dentin bridge formation evaluated. Data was analysed by the Kruskal-Wallis test (P<0.05). The pastes and their components were classified in the following decreasing order of antimicrobial action: calcium hydroxide P.A., paste A, paste B and Copaifera langsdorffii Desfon oil. Calcium hydroxide P.A. showed significantly higher antimicrobial action than the pastes or their vehicles. No significant difference was observed between the two pastes in dentin bridge formation. Based on the microorganisms studied, it can be concluded that the pastes analysed showed similar antimicrobial potential but differed significantly from their individual components. No significant difference was observed in dentin bridge formation between the different pastes tested.
Resumo:
For many years AASHTO provided no recommendation to state DOT’s on bottom flange confinement reinforcement for their bridge superstructures. The 1996 edition of AASHTO Standard Specification for Highway Bridges stated that nominal reinforcement be placed to enclose the prestressing steel from the end of the girder for at least a distance equal to the girder’s height. A few years later the 2004 AASHTO LRFD Bridge Design Specification changed the distance over which the confinement was to be distributed from 1.0h to 1.5h, and gave minimum requirements for the amount of steel to be used, No.3 bars, and their maximum spacing, not to exceed 6”. Research was undertaken to study what impact, if any, confinement reinforcement has on the performance of prestressed concrete bridge girders. Of particular interest was the effect confinement had on the transfer length, development length, and vertical shear capacity of the fore mentioned members. First, an analytical investigation was performed on the subject, and then an experimental investigation followed which consisted of designing, fabricating, and testing eight tee-girders and three NU1100 girders with particular attention paid to the amount and distribution of confinement reinforcement placed at the end of each girder. The results of the study show: 1) neither the amount or distribution of confinement reinforcement had a significant effect on the initial or final transfer length of the prestress strands; 2) at the AASHTO calculated development length, no significant impact from confinement was found on either the nominal flexural capacity of bridge girders or bond capacity of the prestressing steel; 3) the effects from varied confinement reinforcement on the shear resistance of girders tested was negligible, however, distribution of confinement did show to have an impact on the prestressed strands’ bond capacity; 4) confinement distribution across the entire girder did increase ductility and reduced cracking under extreme loading conditions.
Resumo:
Cornachione AS, Rassier DE. A non-cross-bridge, static tension is present in permeabilized skeletal muscle fibers after active force inhibition or actin extraction. Am J Physiol Cell Physiol 302: C566-C574, 2012. First published November 16, 2011; doi: 10.1152/ajpcell.00355.2011.-When activated muscle fibers are stretched, there is a long-lasting increase in the force. This phenomenon, referred to as "residual force enhancement," has characteristics similar to those of the " static tension," a long-lasting increase in force observed when muscles are stretched in the presence of Ca2+ but in the absence of myosin-actin interaction. Independent studies have suggested that these two phenomena have a common mechanism and are caused either by 1) a Ca2+-induced stiffening of titin or by 2) promoting titin binding to actin. In this study, we performed two sets of experiments in which activated fibers (pCa(2+) 4.5) treated with the myosin inhibitor blebbistatin were stretched from 2.7 to 2.8 mu m at a speed of 40 L-o/s, first, after partial extraction of TnC, which inhibits myosin-actin interactions, or, second, after treatment with gelsolin, which leads to the depletion of thin (actin) filaments. We observed that the static tension, directly related with the residual force enhancement, was not changed after treatments that inhibit myosin-actin interactions or that deplete fibers from troponin C and actin filaments. The results suggest that the residual force enhancement is caused by a stiffening of titin upon muscle activation but not with titin binding to actin. This finding indicates the existence of a Ca2+-regulated, titin-based stiffness in skeletal muscles.
Resumo:
The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.