976 resultados para Brain imaging
Resumo:
Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.
Resumo:
Traditionally functional magnetic resonance imaging (fMRI) has been used to map activity in the human brain by measuring increases in the Blood Oxygenation Level Dependent (BOLD) signal. Often accompanying positive BOLD fMRI signal changes are sustained negative signal changes. Previous studies investigating the neurovascular coupling mechanisms of the negative BOLD phenomenon have used concurrent 2D-optical imaging spectroscopy (2D-OIS) and electrophysiology (Boorman et al., 2010). These experiments suggested that the negative BOLD signal in response to whisker stimulation was a result of an increase in deoxy-haemoglobin and reduced multi-unit activity in the deep cortical layers. However, Boorman et al. (2010) did not measure the BOLD and haemodynamic response concurrently and so could not quantitatively compare either the spatial maps or the 2D-OIS and fMRI time series directly. Furthermore their study utilised a homogeneous tissue model in which is predominantly sensitive to haemodynamic changes in more superficial layers. Here we test whether the 2D-OIS technique is appropriate for studies of negative BOLD. We used concurrent fMRI with 2D-OIS techniques for the investigation of the haemodynamics underlying the negative BOLD at 7 Tesla. We investigated whether optical methods could be used to accurately map and measure the negative BOLD phenomenon by using 2D-OIS haemodynamic data to derive predictions from a biophysical model of BOLD signal changes. We showed that despite the deep cortical origin of the negative BOLD response, if an appropriate heterogeneous tissue model is used in the spectroscopic analysis then 2D-OIS can be used to investigate the negative BOLD phenomenon.
Resumo:
We describe a mathematical model linking changes in cerebral blood flow, blood volume and the blood oxygenation state in response to stimulation. The model has three compartments to take into account the fact that the cerebral blood flow and volume as measured concurrently using laser Doppler flowmetry and optical imaging spectroscopy have contributions from the arterial, capillary as well as the venous compartments of the vasculature. It is an extension to previous one-compartment hemodynamic models which assume that the measured blood volume changes are from the venous compartment only. An important assumption of the model is that the tissue oxygen concentration is a time varying state variable of the system and is driven by the changes in metabolic demand resulting from changes in neural activity. The model takes into account the pre-capillary oxygen diffusion by flexibly allowing the saturation of the arterial compartment to be less than unity. Simulations are used to explore the sensitivity of the model and to optimise the parameters for experimental data. We conclude that the three-compartment model was better than the one-compartment model at capturing the hemodynamics of the response to changes in neural activation following stimulation.
Resumo:
The temporal relationship between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is important in the biophysical modeling and interpretation of the hemodynamic response to activation, particularly in the context of magnetic resonance imaging and the blood oxygen level-dependent signal. Grubb et al. (1974) measured the steady state relationship between changes in CBV and CBF after hypercapnic challenge. The relationship CBV proportional to CBFPhi has been used extensively in the literature. Two similar models, the Balloon (Buxton et al., 1998) and the Windkessel (Mandeville et al., 1999), have been proposed to describe the temporal dynamics of changes in CBV with respect to changes in CBF. In this study, a dynamic model extending the Windkessel model by incorporating delayed compliance is presented. The extended model is better able to capture the dynamics of CBV changes after changes in CBF, particularly in the return-to-baseline stages of the response.
Resumo:
An analysis method for diffusion tensor (DT) magnetic resonance imaging data is described, which, contrary to the standard method (multivariate fitting), does not require a specific functional model for diffusion-weighted (DW) signals. The method uses principal component analysis (PCA) under the assumption of a single fibre per pixel. PCA and the standard method were compared using simulations and human brain data. The two methods were equivalent in determining fibre orientation. PCA-derived fractional anisotropy and DT relative anisotropy had similar signal-to-noise ratio (SNR) and dependence on fibre shape. PCA-derived mean diffusivity had similar SNR to the respective DT scalar, and it depended on fibre anisotropy. Appropriate scaling of the PCA measures resulted in very good agreement between PCA and DT maps. In conclusion, the assumption of a specific functional model for DW signals is not necessary for characterization of anisotropic diffusion in a single fibre.
Resumo:
Background Major depressive disorders (MDD) are a debilitating and pervasive group of mental illnesses afflicting many millions of people resulting in the loss of 110 million working days and more than 2,500 suicides per annum. Adolescent MDD patients attending NHS clinics show high rates of recurrence into adult life. A meta-analysis of recent research shows that psychological treatments are not as efficacious as previously thought. Modest treatment outcomes of approximately 65% of cases responding suggest that aetiological and clinical heterogeneity may hamper the better use of existing therapies and discovery of more effective treatments. Information with respect to optimal treatment choice for individuals is lacking, with no validated biomarkers to aid therapeutic decision-making. Methods/Design Magnetic resonance-Improving Mood with Psychoanalytic and Cognitive Therapies, the MR-IMPACT study, plans to identify brain regions implicated in the pathophysiology of depressions and examine whether there are specific behavioural or neural markers predicting remission and/or subsequent relapse in a subsample of depressed adolescents recruited to the IMPACT randomised controlled trial (Registration # ISRCTN83033550). Discussion MR-IMPACT is an investigative biomarker component of the IMPACT pragmatic effectiveness trial. The aim of this investigation is to identify neural markers and regional indicators of the pathophysiology of and treatment response for MDD in adolescents. We anticipate that these data may enable more targeted treatment delivery by identifying those patients who may be optimal candidates for therapeutic response.
Resumo:
Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual’s tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain–cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual’s tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG–DMN structural connectivity and more dynamic resting state PAG–DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks.
Resumo:
This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3 s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach
Resumo:
Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults’ positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults’ positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496–502; Mather and Knight: Psychol Aging 2005;20:554–570] argues that the positivity effect is a result of older adults’ greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults’ positivity effect than the aging-brain model.
Resumo:
The arousal-biased competition model predicts that arousal increases the gain on neural competition between stimuli representations. Thus, the model predicts that arousal simultaneously enhances processing of salient stimuli and impairs processing of relatively less-salient stimuli. We tested this model with a simple dot-probe task. On each trial, participants were simultaneously exposed to one face image as a salient cue stimulus and one place image as a non-salient stimulus. A border around the face cue location further increased its bottom-up saliency. Before these visual stimuli were shown, one of two tones played: one that predicted a shock (increasing arousal) or one that did not. An arousal-by-saliency interaction in category-specific brain regions (fusiform face area for salient faces and parahippocampal place area for non-salient places) indicated that brain activation associated with processing the salient stimulus was enhanced under arousal whereas activation associated with processing the non-salient stimulus was suppressed under arousal. This is the first functional magnetic resonance imaging study to demonstrate that arousal can enhance information processing for prioritized stimuli while simultaneously impairing processing of non-prioritized stimuli. Thus, it goes beyond previous research to show that arousal does not uniformly enhance perceptual processing, but instead does so selectively in ways that optimizes attention to highly salient stimuli.
Resumo:
OBJECTIVE: This study modeled win and lose trials in a simple gambling task to examine the effect of entire win-lose situations (WIN, LOSS, or TIE) on single win/lose trials and related neural underpinnings. METHODS: The behavior responses and brain activities of 17 participants were recorded by an MRI scanner while they performed a gambling task. Different conditions were compared to determine the effect of the task on the behavior and brain activity of the participants. Correlations between brain activity and behavior were calculated to support the imaging results. RESULTS: In win trials, LOSS caused less intense posterior cingulate activity than TIE. In lose trials, LOSS caused more intense activity in the right superior temporal gyrus, bilateral superior frontal gyrus, bilateral anterior cingulate, bilateral insula cortex, and left orbitofrontal cortex than WIN and TIE. CONCLUSIONS: The experiences of the participants in win trials showed great similarity among different win-lose situations. However, the brain activity and behavior responses of the participants in lose trials indicated that they experienced stronger negative emotion in LOSS. The participants also showed an increased desire to win in LOSS than in WIN or TIE conditions.
Resumo:
BACKGROUND: Neural responses to rewarding food cues are significantly different in the fed vs. fasted (>8 h food-deprived) state. However, the effect of eating to satiety after a shorter (more natural) intermeal interval on neural responses to both rewarding and aversive cues has not been examined. OBJECTIVE: With the use of a novel functional magnetic resonance imaging (fMRI) task, we investigated the effect of satiation on neural responses to both rewarding and aversive food tastes and pictures. DESIGN: Sixteen healthy participants (8 men, 8 women) were scanned on 2 separate test days, before and after eating a meal to satiation or after not eating for 4 h (satiated vs. premeal). fMRI blood oxygen level-dependent (BOLD) signals to the sight and/or taste of the stimuli were recorded. RESULTS: A whole-brain cluster-corrected analysis (P < 0.05) showed that satiation attenuated the BOLD response to both stimulus types in the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex, nucleus accumbens, hypothalamus, and insula but increased BOLD activity in the dorsolateral prefrontal cortex (dlPFC; local maxima corrected to P ≤ 0.001). A psychophysiological interaction analysis showed that the vmPFC was more highly connected to the dlPFC when individuals were exposed to food stimuli when satiated than when not satiated. CONCLUSIONS: These results suggest that natural satiation attenuates activity in reward-related brain regions and increases activity in the dlPFC, which may reflect a "top down" cognitive influence on satiation. This trial was registered at clinicaltrials.gov as NCT02298049.
Resumo:
AbstractBackground Depression in adolescence is debilitating with high recurrence in adulthood, yet its pathophysiological mechanism remains enigmatic. To examine the interaction between emotion, cognition and treatment, functional brain responses to sad and happy distractors in an affective go/no-go task were explored before and after Cognitive Behavioural Therapy (CBT) in depressed female adolescents, and healthy participants. Methods Eighty-two Depressed and 24 healthy female adolescents, aged 12 to 17 years, performed a functional magnetic resonance imaging (fMRI) affective go/no-go task at baseline. Participants were instructed to withhold their responses upon seeing happy or sad words. Among these participants, 13 patients had CBT over approximately 30 weeks. These participants and 20 matched controls then repeated the task. Results At baseline, increased activation in response to happy relative to neutral distractors was observed in the orbitofrontal cortex in depressed patients which was normalized after CBT. No significant group differences were found behaviourally or in brain activation in response to sad distractors. Improvements in symptoms (mean: 9.31, 95% CI: 5.35-13.27) were related at trend-level to activation changes in orbitofrontal cortex. Limitations In the follow-up section, a limited number of post-CBT patients were recruited. Conclusions To our knowledge, this is the first fMRI study addressing the effect of CBT in adolescent depression. Although a bias toward negative information is widely accepted as a hallmark of depression, aberrant brain hyperactivity to positive distractors was found and normalised after CBT. Research, assessment and treatment focused on positive stimuli could be a future consideration. Moreover, a pathophysiological mechanism distinct from adult depression may be suggested and awaits further exploration.
Resumo:
Eating disorders are characterized by aberrant cognitions and behaviors around food. We used a novel functional magnetic resonance imaging task in a sample of recovered anorexia nervosa subjects to study the neural response to both pleasant and aversive food tastes and pictures compared with a group of matched female subjects who had never had the disorder. We report that individuals recovered from anorexia nervosa have an increased neural response to rewarding and aversive food stimuli, in the form of chocolate (e.g., in the ventral striatum) and moldy strawberries (e.g., in the caudate).
Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging
Resumo:
Background Convergent evidence implicates white matter abnormalities in bipolar disorder. The cingulum is an important candidate structure for study in bipolar disorder as it provides substantial white matter connections within the corticolimbic neural system that subserves emotional regulation involved in the disorder. Aims To test the hypothesis that bipolar disorder is associated with abnormal white matter integrity in the cingulum. Method Fractional anisotropy in the anterior and posterior cingulum was compared between 42 participants with bipolar disorder and 42 healthy participants using diffusion tensor imaging. Results Fractional anisotropy was significantly decreased in the anterior cingulum in the bipolar disorder group compared with the healthy group (P=0.003); however, fractional anisotropy in the posterior cingulum did not differ significantly between groups. Conclusions Our findings demonstrate abnormalities in the structural integrity of the anterior cingulum in bipolar disorder. They extend evidence that supports involvement of the neural system comprising the anterior cingulate cortex and its corticolimbic gray matter connection sites in bipolar disorder to implicate abnormalities in the white matter connections within the system provided by the cingulum.