995 resultados para Brain Growth
Resumo:
Background: Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over optimal fluid management for these patients. This study aimed to investigate the effects of acute hemodilution with hydroxyethyl starch (HES) or lactated Ringer`s solution (LR) in intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in dogs submitted to a cryogenic brain injury model. Methods: Design-Prospective laboratory animal study. Setting-Research laboratory in a teaching hospital. Subjects-Thirty-five male mongrel dogs. Interventions-Animals were enrolled to five groups: control, hemodilution with LR or HES 6% to an hematocrit target of 27% or 35%. Results: ICP and CPP levels were measured after cryogenic brain injury. Hemodilution promotes an increment of ICP levels, which decreases CPP when hematocrit target was estimated in 27.% after hemodilution. However, no differences were observed regarding crystalloid or colloid solution used for hemodilution in ICP and CPP levels. Conclusions: Hemodilution to a low hematocrit level increases ICP and decreases CPP scores in dogs submitted to a cryogenic brain injury. These results suggest that excessive hemodilution to a hematocrit below 30% should be avoided in traumatic brain injury patients.
Resumo:
Tissue damage in the kidney and brain after systemic infection with Candida albicans was examined in recombinant inbred strains (AKXL) derived from AKR and C57/L progenitors. Nine of the 15 strains showed mild (C57/L-like) tissue damage. Of the remainder, two strains developed lesions comparable to the AKR parental strain, whereas four exhibited a much move severe pattern of tissue damage. This was characterized by pronounced mycelial growth in the brain, and gross oedema of the kidney, with extensive fungal colonization and marked tissue destruction. The presence of the null allele of the haemolytic complement gene (Hc) may be necessary but not sufficient, for the expression of the very severe lesions. The results were interpreted as reflecting the actions of two independent genes, which have been designated Carg1 and Carg2 (Candida albicans resistance genes 1 and 2). (C) 1997 Academic Press Limited.
Resumo:
The olfactory nervous system is responsible for the detection of odors. Primary sensory olfactory neurons are located in a neuroepithelial sheet lining the nasal cavity. The axons from these neurons converge on to discrete loci or glomeruli in the olfactory bulb. Each glomerulus consists of the termination of thousands of primary axons on the dendrites of second-order olfactory neurons. What are the molecular mechanisms which guide growing olfactory axons to select sites in the olfactory bulb? We have shown that subpopulations of these axons differentially express cell surface carbohydrates and that these different subpopulations target and terminate in particular regions of the olfactory bulb. Interestingly, the olfactory neurons and glial components in the olfactory pathway between the nose and brain express galectin-1. By using in vitro assays of neurite outgrowth we found that both galectin-1 and it's ligands were capable of specifically stimulating neurite elongation. Examination of the olfactory system in galectin-1 null mutants revealed that a subpopulation of axons failed to navigate to their target site in the olfactory bulb. This is the first phenotypic effect observed in galectin-1 null mutants and indicates that galectin-1 has a role in the growth and/or guidance of a subpopulation of axons in the olfactory system during development.
Resumo:
Insulin-like growth factor I has similar mitogenic effects to insulin, a growth factor required by most cells in culture, and it can replace insulin in serum-free formulations for some cells. Chinese Hamster Ovary cells grow well in serum-free medium with insulin and transferrin as the only exogenous growth factors. An alternative approach to addition of exogenous growth factors to serum-free medium is transfection of host cells with growth factor-encoding genes, permitting autocrine growth. Taking this approach, we constructed an IGF-I heterologous gene driven by the cytomegalovirus promoter, introduced it into Chinese Hamster Ovary cells and examined the growth characteristics of Insulin-like growth factor I-expressing clonal cells in the absence of the exogenous factor. The transfected cells secreted up to 500 ng/10(6) cells/day of mature Insulin-like growth factor I into the conditioned medium and as a result they grew autonomously in serum-free medium containing transferrin as the only added growth factor. This growth-stimulating effect, observed under both small and large scale culture conditions, was maximal since no further improvement was observed in the presence of exogenous insulin.
Resumo:
Three experiments were conducted in the dry tropics of north Australia using Bos indicus-cross cows. Cows in mid-late pregnancy were either unsupplemented during the late dry season or offered ad libitum (2 kg/day) molasses with 7.4% urea (w/w) (M8U) or cottonseed meal (1 kg/day) for up to 54 days commencing 2 months before the start of the calving season. Supplementation reduced weight loss in experiments 1 and 2 (P
Resumo:
Background: Adrenocortical tumors are heterogeneous neoplasms with incompletely understood pathogenesis. IGF-II overexpression has been consistently demonstrated in adult adrenocortical carcinomas. Objectives: The objective of the study was to analyze expression of IGF-II and its receptor (IGF-IR) in pediatric and adult adrenocortical tumors and the effects of a selective IGF-IR kinase inhibitor (NVP-AEW541) on adrenocortical tumor cells. Patients: Fifty-seven adrenocortical tumors (37 adenomas and 20 carcinomas) from 23 children and 34 adults were studied. Methods: Gene expression was determined by quantitative real-time PCR. Cell proliferation and apoptosis were analyzed in NCI H295 cells and a new cell line established from a pediatric adrenocortical adenoma. Results: IGF-II transcripts were overexpressed in both pediatric adrenocortical carcinomas and adenomas. Otherwise, IGF-II was mainly overexpressed in adult adrenocortical carcinomas (270.5 +/- 130.2 vs. 16.1 +/- 13.3; P = 0.0001). IGF-IR expression was significantly higher in pediatric adrenocortical carcinomas than adenomas (9.1 +/- 3.1 vs. 2.6 +/- 0.3; P = 0.0001), whereas its expression was similar in adult adrenocortical carcinomas and adenomas. IGF-IR expression was a predictor of metastases in pediatric adrenocortical tumors in univariate analysis (hazard ratio 1.84; 95% confidence interval 1.28 -2.66; P = 0.01). Furthermore, NVP-AEW541 blocked cell proliferation in a dose-and time-dependent manner in both cell lines through a significant increase of apoptosis. Conclusion: IGF-IR overexpression was a biomarker of pediatric adrenocortical carcinomas. Additionally, a selective IGF-IR kinase inhibitor had antitumor effects in adult and pediatric adrenocortical tumor cell lines, suggesting that IGF-IR inhibitors represent a promising therapy for human adrenocortical carcinoma.
Resumo:
The results of this study challenge the widely held view that growth hormone (GH) acts only during the postnatal period. RNA phenotyping shows transcripts for the GH receptor and GH-binding protein in mouse preimplantation embryos of all stages from fertilized eggs (day 1) to blastocysts (day 4). An antibody specific to the cytoplasmic region of the GH receptor revealed receptor protein expression, first in two-cell embryos, the stage of activation of the embryonic genome (day 2), and in all subsequent stages, In cleavage-stage embryos this immunoreactivity was localized mainly to the nucleus, but clear evidence of membrane labeling was apparent in blastocysts. GH receptor immunoreactivity was also observed in cumulus cells associated with unfertilized oocytes but not in the unfertilized oocytes. The blastocyst receptor was demonstrated to be functional, exhibiting the classic bell-shaped dose-response curves for GH stimulation of both 3-O-methyl glucose transport and protein synthesis. Maximal stimulation of 40-50% was seen for both responses at less than 1 ng/ml recombinant GH, suggesting a role for maternal GK. However mRNA transcripts for GH were also detected from the morula stage (day 3) by using reverse transcription-PCR, and GH immunoreactivity was seen in blastocysts. These observations raise the possibility of a paracrine/autocrine GH loop regulating embryonic development in its earliest stages.
Resumo:
Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over therapeutic management for these patients. The objective of this study was to analyze the effect of phototherapy with low intensity lasers on local and systemic immunomodulation following cryogenic brain injury. Laser phototherapy was applied (or not-controls) immediately after cryogenic brain injury performed in 51 adult male Wistar rats. The animals were irradiated twice (3 h interval), with continuous diode laser (gallium-aluminum-arsenide (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP), 660 nm) in two points and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). The experimental groups were: Control (non-irradiated), RL3 (visible red laser/ 3 J/cm(2)), RL5 (visible red laser/5 J/cm(2)), IRL3 (infrared laser/ 3 J/cm(2)), IRL5 (infrared laser/5 J/cm(2)). The production of interleukin-1IL-1 beta (IL-1 beta), interleukin6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha) was analyzed by enzyme immunoassay technique (ELISA) test in brain and blood samples. The IL-1 beta concentration in brain of the control group ;was significantly reduced in 24 h (p < 0.01). This reduction was also observed in the RL5 and IRL3 groups. The TNF-alpha and IL-6 concentrations increased significantly (p < 0.01 and p < 0.05, respectively) in the blood of all groups, except by the IRL3 group. The IL-6 levels in RL3 group were significantly smaller than in control group in both experimental times. IL-10 concentration was maintained stable in all groups in brain and blood. Under the conditions of this study, it is possible to conclude that the laser phototherapy can affect TNF-alpha, IL-1 beta and IL-6 levels in the brain and in circulation in the first 24 h following cryogenic brain injury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
To date, measurements of GH-binding protein (GHBP) during human pregnancy have been carried out using;assays susceptible to interference by the elevated levels of human placental GH typical of late gestation. We recruited a large cohort of pregnant women (n = 140) for serial measurements of GHBP and used the ligand immunofunctional assay for GHBP. For normal gravidas, GHBP levels fell throughout gestation. Mean levels were 1.07 nmol/L (SE = 0.18) in the first trimester, 0.90 nmol/L (SE = 0.08) at 18-20 weeks, 0.73 nmol/L (SE = 0.05) at 28-30 weeks, and 0.62 nmol/L (SE = 0.06) at 36-38 weeks. GHBP levels in the first trimester correlated significantly with maternal body mass index (r = 0.58; P < 0.01). GHBP levels in pregnancies complicated by noninsulin-dependent diabetes mellitus (NIDDM) were substantially elevated at all gestational ages. The mean value in the first quarter (2.29 nmol/L) was more than double the normal mean (P < 0.01). In contrast, patients with insulin-dependent diabetes mellitus (IDDM) showed reduced GHBP concentrations at 36-38 weeks. The correlation between body mass index and GHBP is consistent with a metabolic role for GHBP during pregnancy, as is the dramatic elevation in GHBP observed in cases of NIDDM. At 36 weeks gestation, GHBP was significantly elevated (P < 0.01) in those women whose neonates had low birth weight (
Resumo:
In this study, we analyzed whether transplantation of cardiac fibroblasts (CFs) expressing vascular endothelial growth factor (VEGF) mitigates cardiac dysfunction after myocardial infarction (MI) in rats. First, we observed that the transgene expression lasts longer (45 vs 7 days) when fibroblasts are used as vectors compared with myoblasts. In a preventive protocol, induction of cardiac neovascularization accompanied by reduction in myocardial scar area was observed when cell transplantation was performed 1 week before ischemia/reperfusion and the animals analyzed 3 weeks later. Finally, the therapeutic efficacy of this approach was tested injecting cells in a fibrin biopolymer, to increase cardiac retention, 24 h post-MI. After 4 weeks, an increase in neovascularization and a decrease in myocardial collagen were observed only in rats that received cells expressing VEGF. Basal indirect or direct hemodynamic measurements showed no differences among the groups whereas under pharmacological stress, only the group that received cells expressing VEGF showed a significant reduction in end-diastolic pressure and improvement in stroke volume and cardiac work. These results indicate that transplantation of CFs expressing VEGF using fibrin biopolymer induces neovascularization and attenuates left ventricle fibrosis and cardiac dysfunction in ischemic heart. Gene Therapy (2010) 17, 305-314; doi:10.1038/gt.2009.146; published online 10 December 2009
Resumo:
Objective: To document outcome and to investigate patterns of physical and psychosocial recovery in the first year following severe traumatic brain injury (TBI) in an Australian patient sample. Design: A longitudinal prospective study of a cohort of patients, with data collection at 3, 6, 9, and 12 months post injury. Setting: A head injury rehabilitation unit in a large metropolitan public hospital. Patients: A sample of 55 patients selected from 120 consecutive admissions with severe TBI. Patients who were more than 3 months post injury on admission, who remained confused, or who had severe communication deficits or a previous neurologic disorder were excluded. Interventions: All subjects participated in a multidisciplinary inpatient rehabilitation program, followed by varied participation in outpatient rehabilitation and community-based sen ices. Main Outcome Measures: The Sickness impact Profile (SIP) provided physical, psychosocial, and total dysfunction scores at each follow-up. Outcome at 1 year was measured by the Disability Rating Scale. Results: Multivariate analysis of variance indicated that the linear trend of recovery over time was less for psychosocial dysfunction than for physical dysfunction (F(1,51) = 5.87, P < .02). One rear post injury, 22% of subjects had returned to their previous level of employability, and 42% were able to live independently. Conclusions: Recovery from TBI in this Australian sample followed a pattern similar to that observed in other countries, with psychosocial dysfunction being more persistent. Self-report measures such as the SIP in TBI research are limited by problems of diminished self-awareness.
Resumo:
The DNA-binding activities of AP-1 and Egr proteins were investigated in nuclear extracts of rat brain regions during ethanol withdrawal. Both DNA-binding activities were transiently elevated in the hippocampus and cerebellum 16 h after withdrawal. In the cerebral cortex, AP-1 and Egr DNA-binding activities increased at 16 h and persisted until 32 and 72 h, respectively. The AP-1 DNA-binding activities in all regions at all times after withdrawal were composed of FosB, c-Jun, JunB, and JunD. c-Fos was detected at all times in the cerebral cortex, at 16 h only in the hippocampus, and from 16 to 72 h in the cerebellum. Withdrawal severity did not affect the composition of the AP-1 DNA-binding activities. Two Egr DNA-binding activities were present in the cortex and hippocampus. The faster-migrating complex predominated in hippocampus, and only the slower-migrating complex (identified as Egr-1) was present in the cerebellum. The increase in DNA-binding activity of immediate early gene-encoded transcription factors supports their proposed role in initiating a cascade of altered gene expression underlying the long-term neuronal response to ethanol withdrawal.