891 resultados para Bovine pituitary Growth hormone gene expression
Resumo:
Statement of the study: Based on data from ecological and analytic epidemiological studies, we have proposed that low prenatal vitamin D is a candidate risk-modifying factor for schizophrenia. Previously, we demonstrated that low prenatal vitamin D adversely affected brain development in neonatal rats (Eyles et al, 2003). Here we examine the impact of both prenatal and early life hypovitaminosis D on various outcomes in the adult rat brain. Methods: Female Sprague-Dawley rats were made vitamin D deficient via the use of a special diet (Dyets CA) and lighting conditions that excluded UVB radiation. Animals were kept under these conditions for 6 weeks then mated with males kept under normal conditions. Vitamin deplete dams were kept under these conditions during pregnancy. Offspring from two test groups were examined. Offspring were either reared with dams repleted with vitamin D at birth or remained under deplete conditions till weaning. Both test groups were weaned under normal vitamin D conditions and remained so till testing at adulthood. We compared the brains of adult offspring kept under both test conditions with animals from control environments. Summary of results: We found a significant persistent dose-related increase in lateral ventricle volume and alterations in anterior cingulate and prefrontal cortical cell densities (consistent with the known prodifferentiation properties of this steroid). In both test groups we observed a reduced expression of NGF as well as a down-regulation of transcripts coding for GABAA alpha 4 receptor and two neuronal structural elements; MAP2 and Neurofilament L. Conclusion: These findings provide further evidence that vitamin D is involved in brain development. An increase in prefrontal cortical cell density, a reduction neuronal structural elements and persistent ventriculomegaly are all common anatomical findings in the brains of patients with schizophrenia. The specific reduction in transcripts for neuronal structural proteins but not GFAP is also in accordance with the proposal that frontal cortical architecture in schizophrenia reflects a reduction in connectivity rather than a reduction in glial processes(Goldman-Rakic and Selemon, 1997). These findings confirm the biological plausibility of early life hypovitaminosis D as a risk factor for schizophrenia.
Resumo:
Human recombinant growth hormone (hGH) has been used to treat short stature in several different conditions, but considerable inter-individual variation in short- and long-term growth response exists. Pharmacogenomics can provide important insights into hGH therapy. The GH receptor (GHR) is the first key molecule mediating GH action. In the past 3 years, a common GHR polymorphism reflecting the presence (GHRf1) or absence (GHRd3) of exon 3 has been under intensive investigation regarding its influence on the response to hGH therapy. Studies that evaluated response to GH treatment determined by these two GHR isoforms in children with GH deficiency, girls with Turner syndrome, children born small for gestational age and patients with acromegaly showed that patients carrying the GHRd3 allele demonstrated a greater GH sensitivity than patients homozygous for the GHRf1 allele. Other studies presented contradictory data, however, which may be caused by confounding factors such as small sample sizes and differences in experimental design. This GHR exon 3 genotype is the first identified genetic factor found to modulate the individual response to GH therapy. This article reviews the historical aspects and pharmacogenetic studies published to date in relation to this GHR polymorphism. The analyses of present and future validation studies may define the use of this and other polymorphisms in clinical practice, moving from pharmacogenetics to routine application and allowing individualization of hGH doses to optimize final outcome. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Purpose: To identify papillary thyroid carcinoma (PTC)-associated transcripts, we compared the gene expression profiles of three Serial Analysis of Gene Expression libraries generated from thyroid tumors and a normal thyroid tissue. Experimental Design: Selected transcripts were validated in a panel of 57 thyroid tumors using quantitative PCR (qPCR). An independent set of 71 paraffin-embedded sections was used for validation using immunohistochemical analysis. To determine if PTC-associated gene expression could predict lymph node involvement, a separate cohort of 130 primary PTC (54 metastatic and 76 nonmetastatic) was investigated. The BRAF(V600E) mutational status was compared with qPCR data to identify genes that might be regulated by abnormal BRAF/MEK/extracellular signal-regulated kinase signaling. Results: We identified and validated new PTC-associated transcripts. Three genes (CST6, CXCL14, and DHRS3) are strongly associated with PTC. Immunohistochemical analysis of CXCL14 confirmed the qPCR data and showed protein expression in PTC epithelial cells. We also observed that CST6, CXCL14, DHRS3, and SPP1 were associated with PTC lymph node metastasis, with CST6, CXCL14, and SPP1 being positively correlated with metastasis and DHRS3 being negatively correlated. Finally, we found a strong correlation between CST6 and CXCL14 expression and BRAF(V600E) mutational status, suggesting that these genes may be induced subsequently to BRAF activation and therefore may be downstream in the BRAF/MEK/extracellular signal-regulated kinase signaling pathway. Conclusion: CST6, CXCL14, DHRS3, and SPP1 may play a role in PTC pathogenesis and progression and are possible molecular targets for FTC therapy.
Resumo:
Context: A better means to accurately identify malignant thyroid nodules and to distinguish them from benign tumors is needed. We previously identified markers for detecting thyroid malignancy, with sensitivity estimated at or close to 100%. One lingering problem with these markers was that false positives occurred with Hurthle cell adenomas (HCA) which lowered test specificity. Methods: To locate accurate diagnostic markers, we profiled in depth the transcripts of a HCA and a Hurthle cell carcinoma (HCC). From 1146 differentially expressed genes, 18 transcripts specifically expressed in HCA were tested by quantitative PCR in a wide range of thyroid tumors (n = 76). Sensibility and specificity were calculated using receiver operating characteristic (ROC). Selected markers were further validated in an independent set of thyroid tumors (n = 82) by immunohistochemistry. To define the panel that would yield best diagnostic accuracy, these markers were tested in combination with our previous identified markers. Results: Seventeen of the 18 genes showed statistical significance based on a mean relative level of expression (P < 0.05). KLK1 (sensitivity = 0.97) and PVALB (sensitivity = 0.94) were the best candidate markers. The combination of PVALB and C1orf24 increased specificity to > 97% and maintained sensitivity for detection of carcinoma. Conclusion: We identified tumor markers that can be used in combination for a more accurate preoperative diagnosis of thyroid nodules and for postoperative diagnosis of thyroid carcinoma in tumor sections. This improved test would help physicians rapidly focus treatment on true malignancies and avoid unnecessary treatment of benign tumors, simultaneously improving medical care and reducing costs. (J Clin Endocrinol Metab 96: E151-E160, 2011)
Resumo:
Context: Necdin activates GNRH gene expression and is fundamental for the development, migration, and axonal extension of murine GNRH neurons. In humans, necdin plays a potential role in the hypogonadotropic hypogonadism phenotype in patients with Prader-Willi syndrome. Aim: To investigate necdin gene (NDN) variants in patients with isolated hypogonadotropic hypogonadism (IHH). Patients and methods: We studied 160 Brazilian patients with IHH, which includes 92 with Kallmann syndrome and 68 with normosmic IHH. Genomic DNA was extracted and the single NDN exon was amplified and sequenced. To measure GNRH transcriptional activity, luciferase reporter plasmids containing GNRH regulatory regions were transiently transfected into GT1-7 cells in the presence and absence of overexpressed wild-type or mutant necdin. Results: A heterozygous variant of necdin, p.V318A, was identified in a 23-year-old male with Kallmann syndrome. The p.V318A was also present in affected aunt and his father and was absent in 100 Brazilian control subjects. Previous FGFR1 gene analysis revealed a missense mutation (p.P366L) in this family. Functional studies revealed a minor difference in the activation of GNRH transcription by mutant protein compared with wild type in that a significant impairment of the necdin protein activity threshold was observed. Conclusion: A rare variant of necdin (p.V318A) was described in a family with Kallmann syndrome associated with a FGFR1 mutation. Familial segregation and in vitro analysis suggested that this non-synonymous variant did not have a direct causative role in the hypogonadism phenotype. NDN mutations are not a frequent cause of congenital IHH.
Resumo:
Sepsis induces a systemic inflammatory response leading to tissue damage and cell death. LPS tolerance affects inflammatory response. To comprehend potential new mechanisms of immune regulation in endotoxemia, we examined macrophage mRNA expression by macroarray affected by LPS tolerance. LPS tolerance was induced with subcutaneous administration of 1 mg/kg/day of LPS over 5 days. Macrophages were isolated from the spleen and the expression of 1200 genes was quantitatively analyzed by the macroarray technique. The tolerant group displayed relevant changes in the expression of 84 mRNA when compared to naive mice. A functional group of genes related to cell death regulation was identified. PARP-1, caspase 3, FASL and TRAIL genes were confirmed by RT-PCR to present lower expression in tolerant mice. In addition, reduced expression of the pro-inflammatory genes TNF-alpha and IFN-gamma in the tolerant group was demonstrated. Following this, animals were challenged with polymicrobial sepsis. Flow cytometry analysis showed reduced necrosis and apoptosis in macrophages from the tolerant group compared to the naive group. Finally, a survival study showed a significant reduction in mortality in the tolerant group. Thus, in the current study we provide evidence for the selective reprogramming of the gene expression of cell death pathways during LPS tolerance and link these changes to protection from cell death and enhanced survival rates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The spatial and temporal association of muscle-specific tropomyosin gene expression, and myofibril assembly and degradation during metamorphosis is analyzed in the gastropod mollusc. Haliotis rufescens. Metamorphosis of tile planktonic larva to the benthic juvenile includes rearrangement and atrophy of specific larval muscles, and biogenesis of the new juvenile muscle system. The major muscle of the larva - the larval retractor muscle - reorganizes at metamorphosis, with two suites of cells having different fates. The ventral cells degenerate, while the dorsal cells become part of the developing juvenile mantle musculature. Prior to these changes in myofibrillar structure, tropomyosin mRNA prevalence declines until undetectable in the ventral cells, while increasing markedly in the dorsal cells. In the foot muscle and right shell muscle, tropomyosin mRNA levels remain relatively stable, even trough myofibril content increases. In a population of median mesoderm cells destined to form de novo the major muscle of the juvenile and adult (the columellar muscle), tropomyosin expression is initiated at 45 h after induction of metamorphosis. Myofibrillar filamentous actin is not detected in these cells until about 7 days later. Given that patterns of tropomyosin mRNA accumulation in relation to myofibril assembly and disassembly differ significantly among the four major muscle systems examined, we suggest that different regulatory mechanisms, probably operating at both transcriptional and post-transcriptional levels, control the biogenesis and atrophy of different larval and postlarval muscles at metamorphosis.
Resumo:
Extensive lymphocyte apoptosis may be an important cause of immune suppression in sepsis. Here we investigated the effect of LPS tolerance on lymphocyte apoptosis in an experimental model of polymicrobial infection. Tolerance was induced by the injection of lipopolysaccharide (1.0 mg/kg/subcutaneously) once a day for 5 days. Macroarray analysis of mRNA isolated from T-(CD4) lymphocytes was used to identify genes that are differentially expressed during LPS tolerance. In addition, assessment of the expression of apoptosis-associated lymphocyte gene products and apoptotic events was performed on the 8th day; 6 h after the terminal challenge with polymicrobial infection or high-dose LPS administration. Survival studies with polymicrobial infection were also conducted. LPS tolerance induced a broad reprogramming of cell death pathways, including a suppression of receptor-mediated and mitochondrial apoptotic pathways, inflammatory caspases, alternate apoptotic pathways, as well as reduced expression of genes involved in necrosis. These alterations led to a marked resistance of lymphocytes against cell death during the subsequent period of sepsis. In addition, LPS tolerance produced an increased differentiation of T-lymphocytes to T(H)1 and T(H)2, with a T(H)1 differentiation predominance. Thus, in the current study we provide an evidence for a marked reprogramming of gene expression of multiple cell death pathways during LPS tolerance. These alterations may play a significant role in the observed protection of the animals from a subsequent lethal polymicrobial sepsis challenge. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
To date, measurements of GH-binding protein (GHBP) during human pregnancy have been carried out using;assays susceptible to interference by the elevated levels of human placental GH typical of late gestation. We recruited a large cohort of pregnant women (n = 140) for serial measurements of GHBP and used the ligand immunofunctional assay for GHBP. For normal gravidas, GHBP levels fell throughout gestation. Mean levels were 1.07 nmol/L (SE = 0.18) in the first trimester, 0.90 nmol/L (SE = 0.08) at 18-20 weeks, 0.73 nmol/L (SE = 0.05) at 28-30 weeks, and 0.62 nmol/L (SE = 0.06) at 36-38 weeks. GHBP levels in the first trimester correlated significantly with maternal body mass index (r = 0.58; P < 0.01). GHBP levels in pregnancies complicated by noninsulin-dependent diabetes mellitus (NIDDM) were substantially elevated at all gestational ages. The mean value in the first quarter (2.29 nmol/L) was more than double the normal mean (P < 0.01). In contrast, patients with insulin-dependent diabetes mellitus (IDDM) showed reduced GHBP concentrations at 36-38 weeks. The correlation between body mass index and GHBP is consistent with a metabolic role for GHBP during pregnancy, as is the dramatic elevation in GHBP observed in cases of NIDDM. At 36 weeks gestation, GHBP was significantly elevated (P < 0.01) in those women whose neonates had low birth weight (