923 resultados para Bovine, Bone histomorphometry, Mechanical stability, Endochondral ossification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold nanorods (AuNRs) have emerged as an exceptional nanotool for a myriad of applications ranging from cancer therapy to tissue engineering. However, their surface modification with biocompatible and stabilizing biomaterials is crucial to allow their use in a biological environment. Herein, low-acyl gellan gum (GG) was used to coat AuNRs surface, taking advantage of its stabilizing, biocompatible and gelling features. The layer-by-layer based strategy implied the successive deposition of poly(acrylic acid), poly(allylamine hydrochloride) and GG, which allowed the formation of a GG hydrogel-like shell with 7 nm thickness around individual AuNRs. Stability studies in a wide range of pH and salt concentrations showed that the polysaccharide coating can prevent AuNRs aggregation. Moreover, a reversible pH-responsive feature of the nanoparticles was observed. Cytocompatibility and osteogenic ability of GG-coated AuNRs was also addressed. After 14 days of culturing within SaOS-2, an osteoblast-like cell line, in vitro studies revealed that AuNRs-GG exhibit no cytotoxicity, were internalized by the cells and localized inside lysosomes. AuNRs-GG combined with osteogenic media enhanced the mineralization capacity two-fold, as compared to cells exposed to osteogenic media alone. The proposed system has shown interesting features for osteogenesis, and further insights might be relevant for drug delivery, tissue engineering and regenerative medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the various possible embodiements of Advanced Therapies and in particular of Tissue Engineering the use of temporary scaffolds to regenerate tissue defects is one of the key issues. The scaffolds should be specifically designed to create environments that promote tissue development and not merely to support the maintenance of communities of cells. To achieve that goal, highly functional scaffolds may combine specific morphologies and surface chemistry with the local release of bioactive agents. Many biomaterials have been proposed to produce scaffolds aiming the regeneration of a wealth of human tissues. We have a particular interest in developing systems based in nanofibrous biodegradable polymers1,2. Those demanding applications require a combination of mechanical properties, processability, cell-friendly surfaces and tunable biodegradability that need to be tailored for the specific application envisioned. Those biomaterials are usually processed by different routes into devices with wide range of morphologies such as biodegradable fibers and meshes, films or particles and adaptable to different biomedical applications. In our approach, we combine the temporary scaffolds populated with therapeutically relevant communities of cells to generate a hybrid implant. For that we have explored different sources of adult and also embryonic stem cells. We are exploring the use of adult MSCs3, namely obtained from the bone marrow for the development autologous-based therapies. We also develop strategies based in extra-embryonic tissues, such as amniotic fluid (AF) and the perivascular region of the umbilical cord4 (Whartonâ s Jelly, WJ). Those tissues offer many advantages over both embryonic and other adult stem cell sourcess. These tissues are frequently discarded at parturition and its extracorporeal nature facilitates tissue donation by the patients. The comparatively large volume of tissue and ease of physical manipulation facilitates the isolation of larger numbers of stem cells. The fetal stem cells appear to have more pronounced immunomodulatory properties than adult MSCs. This allogeneic escape mechanism may be of therapeutic value, because the transplantation of readily available allogeneic human MSCs would be preferable as opposed to the required expansion stage (involving both time and logistic effort) of autologous cells. Topics to be covered: This talk will review our latest developments of nanostructured-based biomaterials and scaffolds in combination with stem cells for bone and cartilage tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B-Lactoglobulin (b-Lg) is the major protein fraction of bovine whey serum and a primary gelling agent. b-Lg has a high nutritional value, is stable at low pH being highly resistant to proteolytic degradation in the stomach, besides, it has the ability of acting as an encapsulating agent. This study aims at assessing the ability of b-Lg nanostructures to associate a nutraceutical - i.e. riboflavin - and release it in a controlled manner throughout an in vitro gastrointestinal (GI) system. For this reason b-Lg nanostructures loaded with riboflavin were critically characterized in terms of their morphology (i.e. size, polydispersity, -potential and shape) by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and efficiency to associate to riboflavin through spectrofluorimetry. Furthermore, these nanocomplexes were evaluated in an in vitro GI model, simulating the physiological conditions. Stable b-Lg nanostructures were obtained at pH 6, of spherical shape, characterized by particle size of 172±1 nm, low polydispersity (i.e. PDI of 0.06±0.02), -potential of -32±3 mV and association efficiency (AE) of 26±1 %. b-Lg nanostructures showed to be stable upon their passage throughout stomach (i.e. particle size, PDI and potential of 248±10 nm, 0.18±0.03 and 18±3 mV, respectively). Concerning their passage throughout the intestine, such nanostructures were mostly degraded in the duodenum. Regarding riboflavin, a release of about 11 % was observed after their passage through stomach, while 35 %, 38 % and 5 % were the released percentages of the total riboflavin associated observed after passage through duodenum, jejunum and ileum, respectively. Hence,b-Lg nanostructures showed to be suitable carriers for riboflavin until the intestine, where their degradation occurs. b-Lg also showed to be structurally stable, under food simulant conditions (yoghurt simulant, composed of 3 % acetic acid), over 14 days, with a protective effect upon riboflavin activity, releasing it in a 7 day period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial cellulose (BC) films from two distinct sources (obtained by static culture with Gluconacetobacter xylinus ATCC 53582 (BC1) and from a commercial source (BC2)) were modified by bovine lactoferrin (bLF) adsorption. The functionalized films (BC+bLF) were assessed as edible antimicrobial packaging, for use in direct contact with highly perishable foods, specifically fresh sausage as a model of meat products. BC+bLF films and sausage casings were characterized regarding their water vapour permeability (WVP), mechanical properties, and bactericidal efficiency against two food pathogens, Escherichia coli and Staphylococcus aureus. Considering their edibility, an in vitro gastrointestinal tract model was used to study the changes occurring in the BC films during passage through the gastrointestinal tract. Moreover, the cytotoxicity of the BC films against 3T3 mouse embryo fibroblasts was evaluated. BC1 and BC2 showed equivalent density, WVP and maximum tensile strength. The percentage of bactericidal efficiency of BC1 and BC2 with adsorbed bLF (BC1+bLF and BC2+bLF, respectively) in the standalone films and in inoculated fresh sausages, was similar against E. coli (mean reduction 69 % in the films per se versus 94 % in the sausages) and S. aureus (mean reduction 97 % in the films per se versus 36 % in the case sausages). Moreover, the BC1+bLF and BC2+bLF films significantly hindered the specific growth rate of both bacteria. Finally, no relevant cytotoxicity against 3T3 fibroblasts was found for the films before and after the simulated digestion. BC films with adsorbed bLF may constitute an approach in the development of bio-based edible antimicrobial packaging systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone defects in revision knee arthroplasty are often located in load-bearing regions. The goal of this study was to determine whether a physiologic load could be used as an in situ osteogenic signal to the scaffolds filling the bone defects. In order to answer this question, we proposed a novel translation procedure having four steps: (1) determining the mechanical stimulus using finite element method, (2) designing an animal study to measure bone formation spatially and temporally using micro-CT imaging in the scaffold subjected to the estimated mechanical stimulus, (3) identifying bone formation parameters for the loaded and non-loaded cases appearing in a recently developed mathematical model for bone formation in the scaffold and (4) estimating the stiffness and the bone formation in the bone-scaffold construct. With this procedure, we estimated that after 3 years mechanical stimulation increases the bone volume fraction and the stiffness of scaffold by 1.5- and 2.7-fold, respectively, compared to a non-loaded situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: 1) to create a new and reproducible animal model to produce heterotopic ossification (HO) 2) to be able to exactly quantify the amount of HO using a microCT scan and 3) to prove the hypothesis that COX-2 inhibitors are efficacious in the prevention of HO. Methods: We developed a IACUC-approved Lewis rat model, in which the ventral side of the right femur was scraped to mechanically disrupt the periosteum. By clamping the vastus intermedius ischemic injury to the muscle was produced to enhance HO. Finally homologous bone marrow from a donor rat was placed on the anterior surface of the femur. Half of the study group (8 rats) received chow mixed with a COX-2 inhibitor, while the other half received normal chow. After 6 weeks the animals were sacrificed, the femurs removed and imaged by microCT. Grading of HO was based on the thickness of ectopic bone as evaluated in a blinded fashion by 3 independent observers. Results: All animals developed bilateral HO. Rats treated with COX-2 inhibitors developed significantly less ectopic bone than the control group rats. Conclusions: The results suggest that we have created a very reliable, reproducible model to form ectopic bone in rats. Using the microCT we can precisely quantify the amount of HO. We have been able to show that COX-2 inhibitors significantly decrease the amount of HO formation and are thus a good alternative to non-specific NSAIDs with their potential serious side effects on the gastrointestinal tract and on hemo-stastis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Complex foot and ankle fractures, such as calcaneum fractures or Lisfranc dislocations, are often associated with a poor outcome, especially in terms of gait capacity. Indeed, degenerative changes often lead to chronic pain and chronic functional limitations. Prescription footwear represents an important therapeutic tool during the rehabilitation process. Local Dynamic Stability (LDS) is the ability of locomotor system to maintain continuous walking by accommodating small perturbations that occur naturally during walking. Because it reflects the degree of control over the gait, LDS has been advocated as a relevant indicator for evaluating different conditions and pathologies. The aim of this study was to analyze changes in LDS induced by orthopaedic shoes in patients with persistent foot and ankle injuries. We hypothesised that footwear adaptation might help patients to improve gait control, which could lead to higher LDS: METHODS: Twenty-five middle-aged inpatients (5 females, 20 males) participated in the study. They were treated for chronic post-traumatic disabilities following ankle and/or foot fractures in a Swiss rehabilitation clinic. During their stay, included inpatients received orthopaedic shoes with custom-made orthoses (insoles). They performed two 30s walking trials with standard shoes and two 30s trials with orthopaedic shoes. A triaxial motion sensor recorded 3D accelerations at the lower back level. LDS was assessed by computing divergence exponents in the acceleration signals (maximal Lyapunov exponents). Pain was evaluated with Visual Analogue Scale (VAS). LDS and pain differences between the trials with standard shoes and the trials with orthopaedic shoes were assessed. RESULTS: Orthopaedic shoes significantly improved LDS in the three axes (medio-lateral: 10% relative change, paired t-test p < 0.001; vertical: 9%, p = 0.03; antero-posterior: 7%, p = 0.04). A significant decrease in pain level (VAS score -29%) was observed. CONCLUSIONS: Footwear adaptation led to pain relief and to improved foot & ankle proprioception. It is likely that that enhancement allows patients to better control foot placement. As a result, higher dynamic stability has been observed. LDS seems therefore a valuable index that could be used in early evaluation of footwear outcome in clinical settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we report the effect of fatty acids on the Thy-1 antigen mRNA decay. Low serum and synthetic medium culture conditions were used to demonstrate that fatty acids, which are important metabolites involved as second messengers in signal transduction, also influence the steady-state mRNA level. Detailed analysis demonstrated that polyunsaturated lipids attached to bovine serum albumin, such as linoleic, linolenic, and arachidonic acids, modulate gene expression specifically in the S1A T lymphoma cell line by inducing a 3-5-fold increase in the steady-state Thy-1 mRNA level, concomitant with a twofold increase in cell surface expression. A similar modulation was observed in the immature CD4-CD8- T cell precursors but not in mature thymocytes. Nuclear run-on and transfection experiments indicated that the observed Thy-1 mRNA level is post-transcriptionally regulated and that the presence of the coding region is sufficient for this adaptive response. A mechanism without a requirement for protein kinase C activation, but involving Ca2+ entry, could account for this difference in Thy-1 mRNA stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HYPOTHESIS: Supraspinatus deficiency associated with total shoulder arthroplasty (TSA) provokes eccentric loading and may induce loosening of the glenoid component. A downward inclination of the glenoid component has been proposed to balance supraspinatus deficiency. METHODS: This hypothesis was assessed by a numeric musculoskeletal model of the glenohumeral joint during active abduction. Three cases were compared: TSA with normal muscular function, TSA with supraspinatus deficiency, and TSA with supraspinatus deficiency and downward inclination of the glenoid. RESULTS: Supraspinatus deficiency increased humeral migration and eccentric loading. A downward inclination of the glenoid partly balanced the loss of stability, but this potential advantage was counterbalanced by an important stress increase within the glenoid cement. The additional subchondral bone reaming required to incline the glenoid component indeed reduced the bone support, increasing cement deformation and stress. CONCLUSION: Glenoid inclination should not be obtained at the expense of subchondral bone support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the association of trabecular bone score (TBS) with microarchitecture and mechanical behavior of human lumbar vertebrae. We found that TBS reflects vertebral trabecular microarchitecture and is an independent predictor of vertebral mechanics. However, the addition of TBS to areal BMD (aBMD) did not significantly improve prediction of vertebral strength. INTRODUCTION: The trabecular bone score (TBS) is a gray-level measure of texture using a modified experimental variogram which can be extracted from dual-energy X-ray absorptiometry (DXA) images. The current study aimed to confirm whether TBS is associated with trabecular microarchitecture and mechanics of human lumbar vertebrae, and if its combination with BMD improves prediction of fracture risk. METHODS: Lumbar vertebrae (L3) were harvested fresh from 16 donors. The anteroposterior and lateral bone mineral content (BMC) and areal BMD (aBMD) of the vertebral body were measured using DXA; then, the TBS was extracted using TBS iNsight software (Medimaps SA, France). The trabecular bone volume (Tb.BV/tissue volume, TV), trabecular thickness (Tb.Th), degree of anisotropy, and structure model index (SMI) were measured using microcomputed tomography. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies to assess failure load and stiffness. RESULTS: The TBS was significantly correlated to Tb.BV/TV and SMI (râeuro0/00=âeuro0/000.58 and -0.62; pâeuro0/00=âeuro0/000.02, 0.01), but not related to BMC and BMD. TBS was significantly correlated with stiffness (râeuro0/00=âeuro0/000.64; pâeuro0/00=âeuro0/000.007), independently of bone mass. Using stepwise multiple regression models, we failed to demonstrate that the combination of BMD and TBS was better at explaining mechanical behavior than either variable alone. However, the combination TBS, Tb.Th, and BMC did perform better than each parameter alone, explaining 79 % of the variability in stiffness. CONCLUSIONS: In our study, TBS was associated with microarchitecture parameters and with vertebral mechanical behavior, but TBS did not improve prediction of vertebral biomechanical properties in addition to aBMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hand development in the European shrew Crocidura russula is described, based on the examination of a cleared and double-stained ontogenetic series and histological sections of a c. 20-day-old embryo and a neonate. In the embryo all carpal elements are still mesenchymal condensations, and there are three more elements than in the adult stage: the 'lunatum', which fuses with the scaphoid around birth; a centrale, which either fuses with another carpal element or just disappears later in ontogeny; and the anlage of an element that later fuses with the radius. Carpal arrangement in the neonate and the adult is the same. In order to compare the relative timing of the onset of ossification in forelimb bones in C. russula with that of other therians, we built up two matrices of events based on two sets of data and used the event-pair method. In the first analysis, ossification of forelimb elements in general was examined, including that of the humerus, radius, ulna, the first carpal and metacarpal to ossify, and the phalanges of the third digit. The second analysis included each carpal, humerus, radius, ulna, the first metacarpal and the first phalanx to ossify. Some characters (= event-pairs) provide synapomorphies for some clades examined. There have been some shifts in the timing of ossification apparently not caused by ecological and/or environmental influences. In two species (Oryctolagus and Myotis), there is a tendency to start the ossification of the carpals relatively earlier than in all other species examined, the sauropsid outgroups included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A role for gut hormone in bone physiology has been suspected. We evidenced alterations of microstructural morphology (trabecular and cortical) and bone strength (both at the whole-bone - and tissue-level) in double incretin receptor knock-out (DIRKO) mice as compared to wild-type littermates. These results support a role for gut hormones in bone physiology. INTRODUCTION: The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have been shown to control bone remodeling and strength. However, lessons from single incretin receptor knock-out mice highlighted a compensatory mechanism induced by elevated sensitivity to the other gut hormone. As such, it is unclear whether the bone alterations observed in GIP or GLP-1 receptor deficient animals resulted from the lack of a functional gut hormone receptor, or by higher sensitivity for the other gut hormone. The aims of the present study were to investigate the bone microstructural morphology, as well as bone tissue properties, in double incretin receptor knock-out (DIRKO) mice. METHODS: Twenty-six-week-old DIRKO mice were age- and sex-matched with wild-type (WT) littermates. Bone microstructural morphology was assessed at the femur by microCT and quantitative X-ray imaging, while tissue properties were investigated by quantitative backscattered electron imaging and Fourier-transformed infrared microscopy. Bone mechanical response was assessed at the whole-bone- and tissue-level by 3-point bending and nanoindentation, respectively. RESULTS: As compared to WT animals, DIRKO mice presented significant augmentations in trabecular bone mass and trabecular number whereas bone outer diameter, cortical thickness, and cortical area were reduced. At the whole-bone-level, yield stress, ultimate stress, and post-yield work to fracture were significantly reduced in DIRKO animals. At the tissue-level, only collagen maturity was reduced by 9 % in DIRKO mice leading to reductions in maximum load, hardness, and dissipated energy. CONCLUSIONS: This study demonstrated the critical role of gut hormones in controlling bone microstructural morphology and tissue properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular networks controlling bone homeostasis are not fully understood. The common evolution of bone and adaptive immunity encourages the investigation of shared regulatory circuits. MHC Class II Transactivator (CIITA) is a master transcriptional co-activator believed to be exclusively dedicated for antigen presentation. CIITA is expressed in osteoclast precursors, and its expression is accentuated in osteoporotic mice. We thus asked whether CIITA plays a role in bone biology. To this aim, we fully characterized the bone phenotype of two mouse models of CIITA overexpression, respectively systemic and restricted to the monocyte-osteoclast lineage. Both CIITA-overexpressing mouse models revealed severe spontaneous osteoporosis, as assessed by micro-computed tomography and histomorphometry, associated with increased osteoclast numbers and enhanced in vivo bone resorption, whereas osteoblast numbers and in vivo bone-forming activity were unaffected. To understand the underlying cellular and molecular bases, we investigated ex vivo the differentiation of mutant bone marrow monocytes into osteoclasts and immune effectors, as well as osteoclastogenic signaling pathways. CIITA-overexpressing monocytes differentiated normally into effector macrophages or dendritic cells but showed enhanced osteoclastogenesis, whereas CIITA ablation suppressed osteoclast differentiation. Increased c-fms and receptor activator of NF-κB (RANK) signaling underlay enhanced osteoclast differentiation from CIITA-overexpressing precursors. Moreover, by extending selected phenotypic and cellular analyses to additional genetic mouse models, namely MHC Class II deficient mice and a transgenic mouse line lacking a specific CIITA promoter and re-expressing CIITA in the thymus, we excluded MHC Class II expression and T cells from contributing to the observed skeletal phenotype. Altogether, our study provides compelling genetic evidence that CIITA, the molecular switch of antigen presentation, plays a novel, unexpected function in skeletal homeostasis, independent of MHC Class II expression and T cells, by exerting a selective and intrinsic control of osteoclast differentiation and bone resorption in vivo. © 2014 American Society for Bone and Mineral Research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of defects in the craniomaxillofacial (CMF) area has mainly been based on bone grafts or metallic fixing plates and screws. Particularly in the case of large calvarial and/or craniofacial defects caused by trauma, tumours or congenital malformations, there is a need for reliable reconstruction biomaterials, because bone grafts or metallic fixing systems do not completely fulfill the criteria for the best possible reconstruction methods in these complicated cases. In this series of studies, the usability of fibre-reinforced composite (FRC) was studied as a biostable, nonmetallic alternative material for reconstructing artificially created bone defects in frontal and calvarial areas of rabbits. The experimental part of this work describes the different stages of the product development process from the first in vitro tests with resin-impregnated fibrereinforced composites to the in vivo animal studies, in which this FRC was tested as an implant material for reconstructing different size bone defects in rabbit frontal and calvarial areas. In the first in vitro study, the FRC was polymerised in contact with bone or blood in the laboratory. The polymerised FRC samples were then incubated in water, which was analysed for residual monomer content by using high performance liquid chromatography (HPLC). It was found that this in vitro polymerisation in contact with bone and blood did not markedly increase the residual monomer leaching from the FRC. In the second in vitro study, different adhesive systems were tested in fixing the implant to bone surface. This was done to find an alternative implant fixing system to screws and pins. On the basis of this study, it was found that the surface of the calvarial bone needed both mechanical and chemical treatments before the resinimpregnated FRC could be properly fixed onto it. In three animal studies performed with rabbit frontal bone defects and critical size calvarial bone defect models, biological responses to the FRC implants were evaluated. On the basis of theseevaluations, it can be concluded that the FRC, based on E-glass (electrical glass) fibres forming a porous fibre veil enables the ingrowth of connective tissues to the inner structures of the material, as well as the bone formation and mineralization inside the fibre veil. Bone formation could be enhanced by using bioactive glass granules fixed to the FRC implants. FRC-implanted bone defects healed partly; no total healing of defects was achieved. Biological responses during the follow-up time, at a maximum of 12 weeks, to resin-impregnated composite implant seemed to depend on the polymerization time of the resin matrix of the FRC. Both of the studied resin systems used in the FRC were photopolymerised and the heat-induced postpolymerisation was used additionally.