986 resultados para Bone replacement
Resumo:
Background: Undernutrition and physical inactivity are both associated with lower bone mass. Objective: This study aimed to investigate the combined effects of early-life undernutrition and urbanized lifestyles in later life on bone mass accrual in young adults from a rural community in India that is undergoing rapid socioeconomic development. Design: This was a prospective cohort study of participants of the Hyderabad Nutrition Trial (1987–1990), which offered balanced protein-calorie supplementation to pregnant women and preschool children younger than 6 y in the intervention villages. The 2009–2010 follow-up study collected data on current anthropometric measures, bone mineral density (BMD) measured by dual-energy X-ray absorptiometry, blood samples, diet, physical activity, and living standards of the trial participants (n = 1446, aged 18–23 y). Results: Participants were generally lean and had low BMD [mean hip BMD: 0.83 (women), 0.95 (men) g/cm2; lumbar spine: 0.86 (women), 0.93 (men) g/cm2]. In models adjusted for current risk factors, no strong evidence of a positive association was found between BMD and early-life supplementation. On the other hand, current lean mass and weight-bearing physical activity were positively associated with BMD. No strong evidence of an association was found between BMD and current serum 25-hydroxyvitamin D or dietary intake of calcium, protein, or calories. Conclusions: Current lean mass and weight-bearing physical activity were more important determinants of bone mass than was early-life undernutrition in this population. In transitional rural communities from low-income countries, promotion of physical activity may help to mitigate any potential adverse effects of early nutritional disadvantage.
Resumo:
Prostate cancer frequently metastasizes to bone, which becomes incurable; yet how cancer cells manage to migrate and grow inside the bone remains unknown. In this study I have discovered that both bone and fat cells within the bone marrow actively promote the survival and expansion of prostate cancer cells, and have subsequently developed approaches that can effectively inhibit these processes. Therefore, my work offers opportunities for the development of new prognostic and therapeutic approaches against metastatic prostate cancer and have the potential for improving the treatment outcome of the patients.
Resumo:
Background Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant (e.g., screw type fixation, press-fit implant).[46, 48, 51, 52, 77, 78] The aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the current challenges. Methods The current advances will be extracted from a systematic literature review including approximately 40 articles. The outcomes measured will include the estimation of the population worldwide as well as the complications (e.g., infection, loosening, fractures, and breakage) and the benefits (e.g., functional outcomes, health-related quality of life).[5-19, 51-53, 55, 57, 58, 62, 73, 79] Results The population of individuals fitted with a bone-anchored prosthesis is approximately 550 worldwide. Publications focusing on infection are sparse. However, the rate of superficial infection is estimated at 20%. Deep infection occurs rarely. Loosening and peri-prosthetic fractures are fairly uncommon. Breakage of implant parts occurs regularly mainly due to fall. All studies reported a significant improvement in functional level and overall quality of life. Conclusions Several commercial implants are in developments in Europe and US. The number of procedures is consistently growing worldwide. This technique might be primary way to fit a prosthesis to young and active amputees by 2025.
Resumo:
Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n 5 14 260), velocity of sound (VOS; n 5 15 514) and BMD (n 5 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n 5 11 452) and new genotyping in 15 cohorts (de novo n 5 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 3 108) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 3 1014). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 3 106 also had the expected direction of association with any fracture (P < 0.05), including threeSNPswithP < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, thisGWAstudy reveals the effect of several genescommon to central DXA-derivedBMDand heel ultrasound/DXAmeasures and points to anewgenetic locus with potential implications for better understanding of osteoporosis pathophysiology.
Resumo:
Background Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant (e.g., screw type fixation, press-fit implant).[46, 48, 51, 52, 77, 78] The aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the current challenges. Methods The current advances will be extracted from a systematic literature review including approximately 40 articles. The outcomes measured will include the estimation of the population worldwide as well as the complications (e.g., infection, loosening, fractures, and breakage) and the benefits (e.g., functional outcomes, health-related quality of life).[5-19, 51-53, 55, 57, 58, 62, 73, 79] Results The population of individuals fitted with a bone-anchored prosthesis is approximately 550 worldwide. Publications focusing on infection are sparse. However, the rate of superficial infection is estimated at 20%. Deep infection occurs rarely. Loosening and peri-prosthetic fractures are fairly uncommon. Breakage of implant parts occurs regularly mainly due to fall. All studies reported a significant improvement in functional level and overall quality of life. Conclusions Several commercial implants are in developments in Europe and US. The number of procedures is consistently growing worldwide. This technique might be primary way to fit a prosthesis to young and active amputees by 2025.
Resumo:
OBJECTIVES: Clinical results of bone mineral density for children with inflammatory bowel disease are commonly reported using reference data for chronological age. It is known that these children, particularly those with Crohn disease, experience delayed growth and maturation. Therefore, it is more appropriate to compare clinical results with bone age rather than chronological age. MATERIALS AND METHODS: Areal bone mineral density (aBMD) was measured using dual energy x-ray absorptiometry, and bone age was assessed using the Tanner-Whitehouse 3 method from a standard hand/wrist radiograph. Results were available for 44 children ages 7.99 to 16.89 years. Areal bone mineral density measurements were converted to z scores using both chronological and bone ages for each subject. RESULTS: Areal bone mineral density z scores calculated using bone age, as opposed to chronological age, were significantly improved for both the total body and lumbar spine regions of interest. When subjects were grouped according to diagnosis, bone age generated z scores remained significantly improved for those with Crohn disease but not for those diagnosed with ulcerative colitis. Grouping of children with Crohn disease into younger and older ages produced significantly higher z scores using bone age compared with chronological for the older age group, but not the younger age group. CONCLUSIONS: Our findings, in accordance with those presented in the literature, suggest that aBMD results in children with Crohn disease should include the consideration of bone age, rather than merely chronological age. Bone size, although not as easily available, would also be an important consideration for interpreting results in paediatric populations. © 2009 by European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition.
Resumo:
This thesis successfully introduced the intellectual framework of immunology in the development of bone biomaterials. The project identified the regulatory role of biomaterials to the immune-response in terms of bone formation and healing of bone defects. The novel methods developed in the project will significantly change the ways of biomaterials assessment and evaluation.
Resumo:
Background Forearm fractures affect 1.7 million individuals worldwide each year and most occur earlier in life than hip fractures. While the heritability of forearm bone mineral density (BMD) and fracture is high, their genetic determinants are largely unknown. Aim To identify genetic variants associated with forearm BMD and forearm fractures. Methods BMD at distal radius, measured by dualenergy x-ray absorptiometry, was tested for association with common genetic variants. We conducted a metaanalysis of genome-wide association studies for BMD in 5866 subjects of European descent and then selected the variants for replication in 715 Mexican American samples. Gene-based association was carried out to supplement the single-nucleotide polymorphism (SNP) association test. We then tested the BMD-associated SNPs for association with forearm fracture in 2023 cases and 3740 controls. Results We found that five SNPs in the introns of MEF2C were associated with forearm BMD at a genome-wide significance level (p<5×10-8) in meta-analysis (lead SNP, rs11951031[T] -0.20 SDs per allele, p=9.01×10-9). The gene-based association test suggested an association between MEF2C and forearm BMD ( p=0.003). The association between MEF2C variants and risk of fracture did not achieve statistical significance (SNP rs12521522[A]: OR=1.14 (95% CI 0.92 to 1.35), p=0.14). Meta-analysis also revealed two genome-wide suggestive loci at CTNNA2 and 6q23.2. Conclusions These findings demonstrate that variants at MEF2C were associated with forearm BMD, implicating this gene in the determination of BMD at forearm.
Resumo:
Advances in tissue-engineering have resulted in a versatile tool-box to specifically design a tailored microenvironment for hematopoietic stem cells (HSCs) in order to study diseases that develop within this setting. However, most current in vivo models fail to recapitulate the biological processes seen in humans. Here we describe a highly reproducible method to engineer humanized bone constructs that are able to recapitulate the morphological features and biological functions of the HSC niches. Ectopic implantation of biodegradable composite scaffolds cultured for 4 weeks with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone organ including a large number of human mesenchymal cells which were shown to be metabolically active and capable of establishing a humanized microenvironment supportive of the homing and maintenance of human HSCs. A syngeneic mouse-to-mouse transplantation assay was used to prove the functionality of the tissue-engineered ossicles. We predict that the ability to tissue engineer a morphologically intact and functional large-volume bone organ with a humanized bone marrow compartment will help to further elucidate physiological or pathological interactions between human HSCs and their native niches.
Resumo:
Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease. Copyright
Resumo:
Summary High bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder. Introduction High bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia. Methods Two hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex. Results Individuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg/m 2, p < 0.001). Conclusion Individuals with unexplained HBM have an excess of clinical characteristics associated with skeletal dysplasia and their relatives are commonly affected, suggesting many may harbour an underlying genetic disorder affecting bone mass.
Resumo:
Summary Bisphosphonates can increase bone mineral density (BMD) in children with osteogenesis imperfecta (OI). In this study of adults with OI type I, risedronate increased BMD at lumbar spine (but not total hip) and decreased bone turnover. However, the fracture rate in these patients remained high. Introduction Intravenous bisphosphonates given to children with OI can increase BMD and reduce fracture incidence. Oral and/or intravenous bisphosphonates may have similar effects in adults with OI. We completed an observational study of the effect of risedronate in adults with OI type I. Methods Thirty-two adults (mean age, 39 years) with OI type I were treated with risedronate (total dose, 35 mg weekly) for 24 months. Primary outcome measures were BMD changes at lumbar spine (LS) and total hip (TH). Secondary outcome measures were fracture incidence, bone pain, and change in bone turnover markers (serum procollagen type I aminopropeptide (P1NP) and bone ALP). A meta-analysis of published studies of oral bisphosphonates in adults and children with OI was performed. Results Twenty-seven participants (ten males and seventeen females) completed the study. BMD increased at LS by 3.9% (0.815 vs. 0.846 g/cm 2, p=0.007; mean Z-score, -1.93 vs. -1.58, p=0.002), with no significant change at TH. P1NP fell by 37% (p=0.00041), with no significant change in bone ALP (p=0.15). Bone pain did not change significantly (p=0.6). Fracture incidence remained high, with 25 clinical fractures and 10 major fractures in fourteen participants (0.18 major fractures per person per year), with historical data of 0.12 fractures per person per year. The meta-analysis did not demonstrate a significant difference in fracture incidence in patients with OI treated with oral bisphosphonates. Conclusions Risedronate in adults with OI type I results in modest but significant increases in BMD at LS, and decreased bone turnover. However, this may be insufficient to make a clinically significant difference to fracture incidence.
Resumo:
Context: Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. Evidence Acquisition and Synthesis: In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. Conclusions: Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.
Resumo:
Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10−4, Bonferroni corrected), of which six reached P < 5 × 10−8, including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
Resumo:
Peak bone mass achieved in adolescence is a determinant of bone mass in later life. In order to identify genetic variants affecting bone mineral density (BMD), we performed a genome-wide association study of BMD and related traits in 1518 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). We compared results with a scan of 134 adults with high or low hip BMD. We identified associations with BMD in an area of chromosome 12 containing the Osterix (SP7) locus, a transcription factor responsible for regulating osteoblast differentiation (ALSPAC: P = 5.8 × 10-4; Australia: P = 3.7 × 10-4). This region has previously shown evidence of association with adult hip and lumbar spine BMD in an Icelandic population, as well as nominal association in a UK population. A meta-analysis of these existing studies revealed strong association between SNPs in the Osterix region and adult lumbar spine BMD (P = 9.9 × 10-11). In light of these findings, we genotyped a further 3692 individuals from ALSPAC who had whole body BMD and confirmed the association in children as well (P = 5.4 × 10-5). Moreover, all SNPs were related to height in ALSPAC children, but not weight or body mass index, and when height was included as a covariate in the regression equation, the association with total body BMD was attenuated. We conclude that genetic variants in the region of Osterix are associated with BMD in children and adults probably through primary effects on growth.