976 resultados para Bone Diseases, Metabolic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

When subjected to increased workload, the heart responds metabolically by increasing its reliance on glucose and structurally by increasing the size of myocytes. Whether changes in metabolism regulate the structural remodeling process is unknown. A likely candidate for a link between metabolism and growth in the heart is the mammalian target of rapamycin (mTOR), which couples energy and nutrient metabolism to cell growth. Recently, sustained mTOR activation has also been implicated in the development of endoplasmic reticulum (ER) stress. We explored possible mechanisms by which acute metabolic changes in the hemodynamically stressed heart regulate mTOR activation, ER stress and cardiac function in the ex vivo isolated working rat heart. Doubling the heart’s workload acutely increased rates of glucose uptake beyond rates of glucose oxidation. The concomitant increase in glucose 6-phosphate (G6P) was associated with mTOR activation, endoplasmic reticulum (ER) stress and impaired contractile function. Both rapamycin and metformin restored glycolytic homeostasis, relieved ER stress and rescued contractile function. G6P and ER stress were also downregulated with mechanical unloading of failing human hearts. Taken together, the data support the hypothesis that metabolic remodeling precedes, triggers, and sustains structural remodeling of the heart and implicate a critical role for G6P in load-induced contractile dysfunction, mTOR activation and ER stress. In general terms, the intermediary metabolism of energy providing substrates provides signals for the onset and progression of hypertrophy and heart failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although more than 100 genes associated with inherited retinal disease have been mapped to chromosomal locations, less than half of these genes have been cloned. This text includes identification and evaluation of candidate genes for three autosomal dominant forms of inherited retinal degeneration: atypical vitelliform macular dystrophy (VMD1), cone-rod dystrophy (CORD), and retinitis pigmentosa (RP). ^ VMD1 is a disorder characterized by complete penetrance but extremely variable expressivity, and includes macular or peripheral retinal lesions and peripappilary abnormalitites. In 1984, linkage was reported between VMD1 and soluble glutamate-pyruvate transaminase GPT); however, placement of GPT to 8q24 on linkage maps had been debated, and VMD1 did not show linkage to microsatellite markers in that region. This study excluded linkage between the loci by cloning GPT, identifying the nucleotide substitution associated with the GPT sozymes, and by assaying VMD1 family samples with an RFLP designed to detect the substitution. In addition, linkage of VMD1 to the known dominant macular degeneration loci was excluded. ^ CORD is characterized by early onset of color-vision deficiency, and decreased visual acuity, However, this retinal degeneration progresses to no light perception, severe macular lesion, and “bone-spicule” accumulations in the peripheral retina. In this study, the disorder in a large Texan family was mapped to the CORD2 locus of 19q13, and a mutation in the retina/pineal-specific cone-rod homeobox gene (CRX) was identified as the disease cause. In addition, mutations in CRX were associated with significantly different retinal disease phenotypes, including retinitis pigmentosa and Leber congenital amaurosis. ^ Many of the mutations leading to inherited retinal disorders have been identified in genes like CRX, which are expressed predominantly in the retina and pineal gland. Therefore, a combination of database analysis and laboratory investigation was used to identify 26 novel retina/pineal-specific expressed sequence tag (EST) clusters as candidate genes for inherited retinal disorders. Eight of these genes were mapped into the candidate regions of inherited retinal degeneration loci. ^ Two of the eight clusters mapped into the retinitis pigmentosa RP13 candidate region of 17p13, and were both determined to represent a single gene that is highly expressed in photoreceptors. This gene, the Ah receptor-interacting like protein-1 (AIPL1), was cloned, characterized, and screened for mutations in RP13 patient DNA samples. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sandhoff disease is a lysosomal storage disorder characterized by the absence of β-hexosaminidase and storage of GM2 ganglioside and related glycolipids in the central nervous system. The glycolipid storage causes severe neurodegeneration through a poorly understood pathogenic mechanism. In symptomatic Sandhoff disease mice, apoptotic neuronal cell death was prominent in the caudal regions of the brain. cDNA microarray analysis to monitor gene expression during neuronal cell death revealed an upregulation of genes related to an inflammatory process dominated by activated microglia. Activated microglial expansion, based on gene expression and histologic analysis, was found to precede massive neuronal death. Extensive microglia activation also was detected in a human case of Sandhoff disease. Bone marrow transplantation of Sandhoff disease mice suppressed both the explosive expansion of activated microglia and the neuronal cell death without detectable decreases in neuronal GM2 ganglioside storage. These results suggest a mechanism of neurodegeneration that includes a vigorous inflammatory response as an important component. Thus, this lysosomal storage disease has parallels to other neurodegenerative disorders, such as Alzheimer's and prion diseases, where inflammatory processes are believed to participate directly in neuronal cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type I hereditary tyrosinaemia (HT1) is a severe human inborn disease resulting from loss of fumaryl-acetoacetate hydrolase (Fah). Homozygous disruption of the gene encoding Fah in mice causes neonatal lethality, seriously limiting use of this animal as a model. We report here that fahA, the gene encoding Fah in the fungus Aspergillus nidulans, encodes a polypeptide showing 47.1% identity to its human homologue, fahA disruption results in secretion of succinylacetone (a diagnostic compound for human type I tyrosinaemia) and phenylalanine toxicity. We have isolated spontaneous suppressor mutations preventing this toxicity, presumably representing loss-of-function mutations in genes acting upstream of fahA in the phenylalanine catabolic pathway. Analysis of a class of these mutations demonstrates that loss of homogentisate dioxygenase (leading to alkaptonuria in humans) prevents the effects of a Fah deficiency. Our results strongly suggest human homogentisate dioxygenase as a target for HT1 therapy and illustrate the usefulness of this fungus as an alternative to animal models for certain aspects of human metabolic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observed that when monocyte/macrophage precursors derived from murine bone marrow were treated with macrophage-colony-stimulating factor (M-CSF), there was a dose-dependent increase in both the number of adherent cells and the degree to which the cells were highly spread. Attachment was supported by fibronectin, but not by vitronectin or laminin, suggesting that the integrins alpha 4 beta 1 and/or alpha 5 beta 1 might mediate this event. Binding to fibronectin was blocked partially by antibodies to either integrin, and inhibition was almost complete when the antibodies were used in combination. By a combination of surface labeling with 125I and metabolic labeling with [35S]methionine and [35S]cysteine, we demonstrated that M-CSF treatment led to increased synthesis and surface expression of the two beta 1 integrins. Since attachment to fibronectin and/or stromal cells plays an important role in the maturation of other hematopoietic lineages, we propose that the action of M-CSF in the differentiation of immature monocytes/macrophages includes stimulated expression of the integrins alpha 4 beta 1 and alpha 5 beta 1, leading to interactions with components of the marrow microenvironment necessary for cell maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To know the impact of the Dynesys system on the functional outcomes in patients with spinal degenerative diseases. Summary of background data: Dynesys system has been proposed as an alternative to vertebral fusion for several spinal degenerative diseases. The fact that it has been used in people with different diagnosis criteria using different tools to measure clinical outcomes makes very difficult unifying the results available nowadays. Methods: The data base of Medlars Online International Literature (MEDLINE) via PubMed©, EMBASE©, and the Cochrane Library Plus were reviewed in search of all the studies published until November 2012 in which an operation with Dynesys in patients with spinal degenerative diseases and an evaluation of the results by an analysis of functional outcomes had taken place. No limits were used to article type, date of publication or language. Results: A total of 134 articles were found, 26 of which fulfilled the inclusion criteria after being assessed by two reviewers. All of them were case series, except for a multicenter randomized clinical trial (RCT) and a prospective case-control study. The selected articles made a total of 1507 cases. The most frequent diagnosis were lumbar spinal canal stenosis (LSCS), degenerative disc disease (DDD), degenerative spondylolisthesis (DS) and lumbar degenerative scoliosis (LDS). In cases of lumbar spinal canal stenosis Dynesys was associated to surgical decompression. Several tools to measure the functional disability and general health status were found. Oswestry Disability Index (ODI), the ODI Korean version (K-Odi), Prolo, Sf-36, Sf-12, Roland-Morris disability questionnaire (RMDQ), and the pain Visual Analogue Scale (VAS) were the most used. They showed positive results in all cases series reviewed. In most studies the ODI decreased about 25% (e.g. from a score of 85% to 60%). Better results when dynamic fusion was combined with nerve root decompression were found. Functional outcomes and leg pain scores with Dynesys were statistically non-inferior to posterolateral spinal fusion using autogenous bone. When Dynesys and decompression was compared with posterior interbody lumbar fixation (PLIF) and decompression, differences in ODI and VAS were not statistically significant. Conclusions: In patients with spinal degenerative diseases due to degenerative disc disorders, spinal canal stenosis and degenerative spondylolisthesis, surgery with Dynesys and decompression improves functional outcomes, decreases disability, and reduces back and leg pain. More studies are needed to conclude that dynamic stabilization is better than posterolateral and posterior interbody lumbar fusion. Studies comparing Dynesys with decompression against decompression alone should be done in order to isolate the effect of the dynamic stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The green-striped burrowing frog, Cyclorana alboguttata, survives extended drought periods by burrowing underground and aestivating. These frogs remain immobile within cocoons of shed skin and mucus during aestivation and emerge from their burrows upon heavy rains to feed and reproduce. Extended periods of immobilisation in mammals typically result in bone remodelling and a decrease in bone strength. We examined the effect of aestivation and, hence, prolonged immobilisation on cross-sectional area, histology and bending strength in the femur and tibiolibula of C alboguttata. Frogs were aestivated in soil for three and nine months and were compared with control animals that remained active, were fed and had a continual supply of water. Compared with the controls, long bone size, anatomy and bending strength remained unchanged, indicating an absence of disuse osteoporosis. This preservation of bone tissue properties enables C. alboguttata to compress the active portions of their life history into unpredictable windows of opportunity, whenever heavy rains occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript provides a summary of the results presented at a symposium organized to accumulate information on factors that influence the prevalence of acaricide resistance and tick-borne diseases. This symposium was part of the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP), held in New Orleans, LA, USA, during August 10-14, 2003. Populations of southern cattle ticks, Boophilus microplus, from Mexico have developed resistance to many classes of acaricide including chlorinated hydrocarbons (DDT), pyrethroids, organ ophosphates, and formamidines (amitraz). Target site mutations are the most common resistance mechanism observed, but there are examples of metabolic mechanisms. In many pyrethroid resistant strains, a single target site mutation on the Na+ channel confers very high resistance (resistance ratios: >1000x) to both DDT and all pyrethroid acaricides. Acetylcholine esterase affinity for OPs is changed in resistant tick populations. A second mechanism of OP resistance is linked to cytochrome P450 monooxygenase activity. A PCR-based assay to detect a specific sodium channel gene mutation that is associated with resistance to permethrin has been developed. This assay can be performed on individual ticks at any life stage with results available in a few hours. A number of Mexican strains of B. microplus with varying profiles of pesticide resistance have been genotyped using this test. Additionally, a specific metabolic esterase with permethrin-hydrolyzing activity, CzEst9, has been purified and its gene coding region cloned. This esterase has been associated with high resistance to permethrin in one Mexican tick population. Work is continuing to clone specific acetylcholinesterase (AChE) and carboxylesterase genes that appear to be involved in resistance to organophosphates. Our ultimate goal is the design of a battery of DNA- or ELISA-based assays capable of rapidly genotyping individual ticks to obtain a comprehensive profile of their susceptibility to various pesticides. More outbreaks of clinical bovine babesisois and anaplasmosis have been associated with the presence of synthetic pyrethroid (SP) resistance when compared to OP and amidine resistance. This may be the result of differences in the temporal and geographic patterns of resistance development to the different acaricides. If acaricide resistance develops slowly, herd immunity may not be affected. The use of pesticides for the control of pests of cattle other than ticks can affect the incidence of tick resistance and tick-borne diseases. Simple analytical models of tick- and tsetse-bome diseases suggest that reducing the abundance of ticks, by treating cattle with pyrethroids for example, can have a variety of effects on tick-bome diseases. In the worst-case scenario, the models suggest that treating cattle might not only have no impact on trypanosomosis but could increase the incidence of tick-bome disease. In the best-case, treatment could reduce the incidence of both trypanosomosis and tick-bome diseases Surveys of beef and dairy properties in Queensland for which tick resistance to amitraz was known were intended to provide a clear understanding of the economic and management consequences resistance had on their properties. Farmers continued to use amitraz as the major acaricide for tick control after the diagnosis of resistance, although it was supplemented with moxidectin (dairy farms) or fluazuron, macrocyclic lactones or cypermethrin/ chlorfenvinphos. (C) 2004 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To study the acid-base effects of crystalloid strong ion difference (SID) during haemodilution. Design. Prospective in vivo study. Setting. University laboratory. Subjects. Anaesthetised, mechanically ventilated Sprague-Dawley rats. Interventions. Rats were studied in seven groups of three. Each group underwent normovolaemic haemodilution with one of seven crystalloids, with SID values from 0 to 40 mEq/l. Six exchanges of 9 ml crystalloid for 3 ml blood were performed. Measurements and main results. [Hb] fell from 142+/-17 to 44+/-10 g/l (p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To compare the effects of a 4-month strength training (ST) versus aerobic endurance training (ET) program on metabolic control, muscle strength, and cardiovascular endurance in subjects with type 2 diabetes mellitus (T2D). Design: Randomized controlled trial. Setting: Large public tertiary hospital. Participants: Twenty-two T21) participants (I I men, I I women; mean age +/- standard error, 56.2 +/- 1.1 y; diabetes duration, 8.8 +/- 3.5y) were randomized into a 4-month ST program and 17 T2D participants (9 men, 8 women; mean age, 57.9 +/- 1.4y; diabetes duration, 9.2 +/- 1.7y) into a 4-month ET program. Interventions: ST (up to 6 sets per muscle group per week) and ET (with an intensity of maximal oxygen consumption of 60% and a volume beginning at 15min and advancing to a maximum of 30min 3X/wk) for 4 months. Main Outcome Measures: Laboratory tests included determinations of blood glucose, glycosylated hemoglobin (Hb A(1c)), insulin, and lipid assays. Results: A significant decline in Hb A, was only observed in the ST group (8.3% +/- 1.7% to 7.1% +/- 0.2%, P=.001). Blood glucose (204 +/- 16mg/dL to 147 +/- 8mg/dL, P <.001) and insulin resistance (9.11 +/- 1.51 to 7.15 +/- 1.15, P=.04) improved significantly in the ST group, whereas no significant changes were observed in the ET group. Baseline levels of total cholesterol (207 +/- 8mg/dL to 184 +/- 7mg/dL, P <.001), low-density lipoprotein cholesterol (120 +/- 8mg/dL to 106 +/- 8mg/dL, P=.001), and triglyceride levels (229 +/- 25mg/dL to 150 +/- 15mg/dL, P=.001) were significantly reduced and high-density lipoprotein cholesterol (43 +/- 3mg/dL to 48 +/- 2mg/dL, P=.004) was significantly increased in the ST group; in contrast, no such changes were seen in the ET group. Conclusions: ST was more effective than ET in improving glycemic control. With the added advantage of an improved lipid profile, we conclude that ST may play an important role in the treatment of T2D.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of fatty liver is rising in association with the global increase in obesity and type 2 diabetes. In the past, simple steatosis was regarded as benign, but the presence of another liver disease may provide a synergistic combination of steatosis, cellular adaptation, and oxidative damage that aggravates liver injury. In this review, a major focus is on the role of steatosis as a co-factor in chronic hepatitis C (HCV), where the mechanisms promoting fibrosis and the effect of weight reduction in minimizing liver injury have been most widely studied. Steatosis, obesity, and associated metabolic factors may also modulate the response to alcohol- and drug-induced liver disease and may be risk factors for the development of hepatocellular cancer. The pathogenesis of injury in obesity-related fatty liver disease involves a number of pathways, which are currently under investigation. Enhanced oxidative stress, increased susceptibility to apoptosis, and a dysregulated response to cellular injury have been implicated, and other components of the metabolic syndrome such as hyperinsulinernia and hyperglycemia are likely to have a role. Fibrosis also may be increased as a by-product of altered hepatocyte regeneration and activation of bipotential hepatic progenitor cells. In conclusion, active management of obesity and a reduction in steatosis may improve liver injury and decrease the progression of fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In subtropical and tropical climates, dehydration is common in cystic fibrosis patients with respiratory exacerbations. This may lead to a clinical presentation of metabolic alkalosis with associated hyponatraemia and hypochloraemia. An adult cystic fibrosis patient who presented with a severe respiratory exacerbation accompanied by metabolic alkalosis is presented and the effects of volume correction are reported.