926 resultados para Blind Source Separation
Resumo:
The boundary-layer type conservation equations of mass, momentum and energy for the steady free turbulent flow in gravitational convection over heat sources are set up for both two-dimensional and axisymmetric cases. These are reduced to ordinary differential equations in a similarity parameter by suitable transformations. The three classical hypotheses of turbulent diffusion-the Constant Exchange Coefficient hypothesis, Prandtl's Momentum Transfer theory and Taylor's Vorticity Transfer theory-are then incorporated into these equations in succession. The resulting equations are solved numerically and the results compared with some experimental results on gravitational convection over heat sources reported by Rouse et al.
Resumo:
Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment.The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The literature review elucidates the mechanism of oxidation in proteins and amino acids and gives an overview of the detection and analysis of protein oxidation products as well as information about ?-lactoglobulin and studies carried out on modifications of this protein under certain conditions. The experimental research included the fractionation of the tryptic peptides of ?-lactoglobulin using preparative-HPLC-MS and monitoring the oxidation process of these peptides via reverse phase-HPLC-UV. Peptides chosen to be oxidized were selected with respect to their amino acid content which were susceptible to oxidation and fractionated according to their m/z values. These peptides were: IPAVFK (m/z 674), ALPMHIR (m/z 838), LIVTQTMK (m/z 934) and VLVLDTDYK (m/z 1066). Even though it was not possible to solely isolate the target peptides due to co-elution of various fractions, the percentages of target peptides in the samples were satisfactory to carry out the oxidation procedure. IPAVFK and VLVLDTDYK fractions were found to yield the oxidation products reviewed in literature, however, unoxidized peptides were still present in high amounts after 21 days of oxidation. The UV data at 260 and 280 nm enabled to monitor both the main peptides and the oxidation products due to the absorbance of aromatic side-chains these peptides possess. ALPMHIR and LIVTQTMK fractions were oxidatively consumed rapidly and oxidation products of these peptides were observed even on day 0. High rates of depletion of these peptides were acredited to the presence of His (H) and sulfur-containing side-chains of Met (M). In conclusion, selected peptides hold the potential to be utilized as marker peptides in ?-lactoglobulin oxidation.
Resumo:
Tlie sclxuntion and clraractcrization of vitamins Al and An nnd related compoundsby reversed-pllasc paper cliromatogrnpl~y as well as ly thin-lqxr chromategraphy have hen rcportccl carlicrl * $. Thin-lnycr chromatography has also been used for the separatinn and charncterizatio11 of carotenoids from natural sourccs3~ ‘1. I-Iowcver, 130tr.rc,1~1~ofib scrvccl that carotenoid misturcs cannot be separated on a sin& aclsorhnt with ;1 sin& solvent. The scparntion and clctermi1wtion of carotenoid alclclydes from plants, microorganisms and animnl tissues have lxxn carriecl out by nicans of thin-layer clirf.~li~ato~apI~~U. Apocarotcnals awl apocarotcnoic acid have been detected in ornnges by the same technique’*
Resumo:
We propose in experimental method to study the instability of thin unsteady separation bubbles, i.e. of unsteady boundary layers with reverse flow. The unsteady boundary layer is created by controlled temporal and spatial variations of the velocity external to the boundary layer. We present results of the evolution of instability in different temporally varying flows in a shallow angle diffuser. Depending on the extent of reverse flow in the boundary we observe that instability can be spatially localised.
Resumo:
We study the problem of guessing the realization of a finite alphabet source, when some side information is provided, in a setting where the only knowledge the guesser has about the source and the correlated side information is that the joint source is one among a family. We define a notion of redundancy, identify a quantity that measures this redundancy, and study its properties. We then identify good guessing strategies that minimize the supremum redundancy (over the family). The minimum value measures the richness of the uncertainty class.
Resumo:
Separation of printed text blocks from the non-text areas, containing signatures, handwritten text, logos and other such symbols, is a necessary first step for an OCR involving printed text recognition. In the present work, we compare the efficacy of some feature-classifier combinations to carry out this separation task. We have selected length-nomalized horizontal projection profile (HPP) as the starting point of such a separation task. This is with the assumption that the printed text blocks contain lines of text which generate HPP's with some regularity. Such an assumption is demonstrated to be valid. Our features are the HPP and its two transformed versions, namely, eigen and Fisher profiles. Four well known classifiers, namely, Nearest neighbor, Linear discriminant function, SVM's and artificial neural networks have been considered and efficiency of the combination of these classifiers with the above features is compared. A sequential floating feature selection technique has been adopted to enhance the efficiency of this separation task. The results give an average accuracy of about 96.
Resumo:
Traditionally, laminar separation bubbles have been characterised as being 'long' or 'short' on the basis of a two parameter 'bursting' criterion involving a pressure gradient parameter and Reynolds Number at separation. In the present work we suggest a refined bursting criterion, which takes into account not just the length of the bubble but also the maximum height of the bubble, thereby shedding some light on the less understood phenomenon of 'bursting' in laminar separation bubbles.
Resumo:
Many transition metal oxide materials of high chemical purity are not necessarily monophasic. Thus, single crystals of chemically pure rare earth manganites and cobaltates of the general formula Ln1-xAxMO3 (Ln=rare earth metal, A=alkaline earth metal, M=Mn, Co) exhibit the phenomenon of electronic phase separation wherein phases of different electronic and magnetic properties coexist. Such phase separation, the length scale of which can vary anywhere between a few nanometers to microns, gives distinct signatures in X-ray and neutron diffraction patterns, electrical and magnetic properties, as well as in NMR and other spectroscopies. While the probe one employs to investigate electronic phase separation depends on the length scale, it is noteworthy that direct imaging of the inhomogeneities has been accomplished. Some understanding of this phenomenon has been possible on the basis of some of the theoretical models, but we are far from unraveling the varied aspects of this new phenomenon. Herein, we present the highlights of experimental techniques and theoretical approaches, and comment on the future outlook for this fascinating phenomenon
Resumo:
Experiments were conducted in water and wind tunnels on spheres in the Reynolds number range 6 x 10(3) to 6.5 x 10(5) to study the effect of natural ventilation on the boundary layer separation and near-wake Vortex shedding characteristics. In the subcritical range of Re (<2 x 10(5)), ventilation caused a marginal downstream shift in the location of laminar boundary layer separation; there was only a small change in the vortex shedding frequency. In the supercritical range (Re > 4 x 10(5)), ventilation caused a downstream shift in the mean locations of boundary layer separation and reattachment; these lines showed significant axisymmetry in the presence of venting. No distinct vortex shedding frequency was found. Instead, a dramatic reduction occurred in the wake unsteadiness at all frequencies. The reduction of wake unsteadiness is consistent with the reduction in total drag already reported. Based on the present results and those reported earlier, the effects of natural ventilation on the flow past a sphere can be categorized in two broad regimes, viz., weak and strong interaction regimes. In the weak interaction regime (subcritical Re), the broad features of the basic sphere are largely unaltered despite the large addition of mass in the near wake. Strong interaction is promoted by the closer proximity of the inner and outer shear layers at supercritical Re. This results in a modified and steady near-wake flow, characterized by reduced unsteadiness and small drag.
Resumo:
The present work gives a comprehensive numerical study of the evolution and decay of cylindrical and spherical nonlinear acoustic waves generated by a sinusoidal source. Using pseudospectral and predictor–corrector implicit finite difference methods, we first reproduced the known analytic results of the plane harmonic problem to a high degree of accuracy. The non-planar harmonic problems, for which the amplitude decay is faster than that for the planar case, are then treated. The results are correlated with the known asymptotic results of Scott (1981) and Enflo (1985). The constant in the old-age formula for the cylindrical canonical problem is found to be 1.85 which is rather close to 2, ‘estimated’ analytically by Enflo. The old-age solutions exhibiting strict symmetry about the maximum are recovered; these provide an excellent analytic check on the numerical solutions. The evolution of the waves for different source geometries is depicted graphically.
Resumo:
The problem of narrowband CFAR (constant false alarm rate) detection of an acoustic source at an unknown location in a range-independent shallow ocean is considered. If a target is present, the received signal vector at an array of N sensors belongs to an M-dimensional subspace if N exceeds the number of propagating modes M in the ocean. A subspace detection method which utilises the knowledge of the signal subspace to enhance the detector performance is presented in thisMpaper. It is shown that, for a given number of sensors N, the performance of a detector using a vector sensor array is significantly better than that using a scalar sensor array. If a target is detected, the detector using a vector sensor array also provides a concurrent coarse estimate of the bearing of the target.