983 resultados para Biology, Microbiology|Health Sciences, Pathology|Health Sciences, Immunology
Resumo:
Regulatory T cells expressing the fork-head box transcription factor 3 (Foxp3) play a central role in the dominant control of immunological tolerance. Compelling evidence obtained from both animal and clinical studies have now linked the expansion and accumulation of Foxp3+ regulatory T cells associated with tumor lesions to the failure of immune-mediated tumor rejection. However, further progress of the field is hampered by the gap of knowledge regarding their phenotypic, functional, and the developmental origins in which these tumor-associated Foxp3+ regulatory T cells are derived. Here, we have characterized the general properties of tumor-associated Foxp3+ regulatory T cells and addressed the issue of tumor microenvironment mediated de-novo induction by utilizing a well known murine tumor model MCA-205 in combination with our BAC Foxp3-GFP reporter mice and OT-II TCR transgenic mice on the RAG deficient background (RAG OT-II). De-novo induction defines a distinct mechanism of converting non-regulatory precursor cells to Foxp3+ regulatory T cells in the periphery as opposed to the expansion of pre-existing regulatory T cells formed naturally during thymic T cell development. This mechanism is of particularly importance to how tumors induce tumor-antigen-specific suppressor cells to subvert anti-tumor immune responses. Our study has found that tumor-associated Foxp3+ regulatory T cells are highly activated, undergo vigorous proliferation, are more potent by in-vitro suppression assays, and express higher levels of membrane-bound TGF-β1 than non-tumor regulatory T cells. With Foxp3-GFP reporter mice or RAG OT-II TCR transgenic mice, we show that tumor tissue can induce detectable de-novo generation of Foxp3+ regulatory T cells of both polyclonal or antigen specific naïve T cells. This process was not only limited for subcutaneous tumors but for lung tumors as well. Furthermore, this process required the inducing antigen to be co-localized within the tumor tissue. Examination of tumor tissue revealed an abundance of myeloid CD11b+ antigen-presenting cells that were capable of inducing Foxp3+ regulatory T cells. Taken together, these findings elucidate the general attributes and origins of tumor-associated Foxp3+ regulatory T cells in the tumor microenvironment and in their role in the negative regulation of tumor immunity.^
Resumo:
Overexpression of insulin-like growth factor binding protein 2 (IGFBP2) is associated with progression and poor survival in many types of human cancer (such as prostate, ovarian, adrenocortical, breast, colorectal carcinomas, leukemia, and high-grade gliomas). We therefore hypothesize that IGFBP2 is a key regulator of tumor progression. We tested our hypothesis in gliomas using the somatic gene transfer RCAS-tva mouse model system, which permits the introduction of specific genes into specific, cell lineages, in this case glial cells (RCAS: Replication competent avian sarcomavirus, tv-a: avian RCAS virus receptor). Mice are transgenic and harbor the tv-a receptor under the control of a glial-specific promoter and study genes are cloned into the RCAS vector for post-natal intracranial delivery. For these experiments, the study genes were IGFBP2, platelet-derived growth factor B (PDGFB), K-Ras, Akt, and IIp45 (invasion inhibitory protein 45 kDa; known to bind and block IGFBP2 activity), which were delivered separately and in combination. Our results show that PDGFB signaling leads exclusively to the formation of low-grade (WHO grade II) oligodendrogliomas. PDGFB delivered in combination with IGFBP2 results in the formation of anaplastic oligodendrogliomas (WHO grade III), which are characterized by increased cellularity, vascular proliferation, small regions of necrosis, increased mitotic activity, and increased activation of the Akt pathway. IIp45 injected in combination with PDGFB and IGFBP2 ablates IGFBP2-induced tumor progression, which results in formation of low-grade oligodendrogliomas, and an overall reduction in tumor incidence. K-Ras expression was required to form astrocytomas with either IGFBP2 or Akt, indicating the activation of two separate pathways is necessary for gliomagenesis. In ex vivo experiments, blockade of Akt by an inhibitor led to decreased viability of cells co-expressing IGFBP2 versus PDGFB expression alone. This study provides definitive evidence, for the first time, that: (1) IGFBP2 plays a role in activation of the Akt pathway, (2) IGFBP2 collaborates with K-Ras or PDGFB in the development and progression of two major types of glioma, and (3) IGFBP2-induced tumor progression can be ablated by IIp45 or by specific inhibition of the Akt pathway. ^
Resumo:
The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease with an estimated 12 million new cases per year worldwide. There is no vaccine currently available for the prevention of syphilis. In the present study, the T. pallidum hypothetical protein TP0693 was examined to determine its cellular location, and its potential for use as a vaccine candidate and immunodiagnostic for syphilis. TP0693 was demonstrated to be strongly reactive with sera from rabbits infected experimentally with T. pallidum for >25 days. Results from proteinase K digestion, immunofluorescence and immunoelectron microscopy were consistent with outer surface localization of TP0693. Serum reactivity against TP0693 was detected in only 68% of syphilis patients, which does not support its use as an immunodiagnostic for syphilis. Immunization of rabbits with TP0693 or three other outer membrane candidates did not alter the course of lesion development atter T. pallidum inoculation. We also examined the T. pallidum proteome by two-dimensional gel electrophoresis coupled with mass spectrometry analysis and immunoblotting. This approach resulted in the identification of 95 unique polypeptides, several of which were reactive with sera from infected rabbits and syphilis patients. The analyses described here enabled us to identify antigens potentially useful as vaccine candidates or diagnostic markers, and may provide insight into host-pathogen interactions during T. pallidum infection. ^
Resumo:
T cell activation requires antigen-specific T cell receptor signals that spatially and temporally coincide with a second costimulatory signal. CD28 and α4β1 integrin both function as T cell costimulators, but their individual mechanisms remain elusive. By directly comparing CD3-dependent functions and signaling pathways employed by these two costimulatory receptors, aspects of their individual signaling mechanisms are explored. We determined that CD28 and α4β1 integrins both use Src-family kinase Lck and MAPK Erk, but to different extents and functional ends. After identifying functional differences between CD28 and integrin costimulatory pathways, the focus of the study turned to integrin signaling in naïve and memory T cell subsets. CD45RO T cells are fully co-activated by natural β1 integrin ligands fibronectin (FN) and VCAM-1, β1 monoclonal antibody 33B6, as well as α4β1 monoclonal antibody 19H8 which binds a combinatorial epitope of the α4β1 heterodimer. While CD28 fully costimulates CD45RA T cells, the degree of activation from integrin ligands varies. FN costimulates CD3-dependent proliferation, IL-2 secretion, and early activation markers CD25 and CD69. However, β1 antibody 33B6, which binds to the same T cell integrins (α4β1 and α5β1) as natural ligand FN, failed to costimulate proliferation or IL-2 in the CD45RA subset, but retained the ability to regulate CD25 and CD69. Unique aspects of 19H8 signaling involve early Erk activation and IL-2 independent proliferation. Signaling defects through 33B6 ligation correlates with poor adhesion under fluid flow conditions, suggesting a cytoskeletal basis for signaling. All together, these data provide evidence for a mechanism of α4β1 integrin signaling and describe functional differences between naïve and memory T cells. ^
Resumo:
Proteins containing the late embryogenesis abundant (LEA) motif comprise an evolutionarily conserved family, long postulated to protect plant embryos from stress and death. However, the significance of LEA-containing proteins and the mechanisms behind their function remain undetermined. Here we show that PRELI, a mammalian protein that possesses tandem repeats of the LEA motif, can protect cells against staurosporine, TNF-α or UV irradiation-induced apoptosis. We found that key to PRELI-dependent mechanisms that promote cell resistance to death are the stabilization of the respiratory chain, upholding of mitochondrial membrane potential and retention of apoptogenic molecules. By in vitro and in vivo studies, we also show that the expression of mutant PRELI/LEA- proteins lacking the LEA motif, results in the complete loss of PRELI's anti-apoptotic functions. Collectively, our data uncover a new molecular player in the control of apoptosis and support the hypothesis that LEA-containing proteins are evolutionarily conserved cell protectors against stress and death. ^
Resumo:
Trimethylaminuria (TMAU) or Fish odor syndrome is an autosomal recessive disease that is characterized by pungent body odor with subsequent psychosocial complications. There are limited studies of the sequence variants causing TMAU in the literature with most studies describing only one or two patients and lacking genotype-phenotype correlations. Also to date, there is no laboratory in the US or Europe that offers TMA genetic testing on a clinical basis. We have recently validated genetic testing in the University of Colorado DNA Diagnostic Laboratory. We have a database of a few dozen patients with a biochemical diagnosis of TMA at the University of Colorado at Denver Health Sciences Center (UCDHSC) which includes a few patients with the classical form of the disease. We have used the newly established clinical test in our institution to attempt to characterize the genotype (sequence variants including mutations and polymorphisms) of classical TMAU patients and to establish a genotype-phenotype (biochemical and clinical) association. The questionnaire results confirmed most of the previously reported epidemiological findings of TMAU and also indicated that TMAU patients use multiple intervention measures in attempt to control their symptoms with dietary control being most effective. Despite the complexity of intervention, most patients did not have any medical follow up and there was underutilization of specialist care. In a set of our patients, two deleterious mutations were identified in 4/12 patients including a novel T237P sequence variant, while the majority of our patients (8/12) did not reveal any mutations. Some of the latter were double heterozygous for the E158K and E308G polymorphisms which could explain a mild phenotype while others had only the E158K variant which raised the question of undetected mutations. These results indicate that further experiments are needed to further delineate the full mutational spectrum of the FMO3 gene. ^
Resumo:
Prostate cancer (PrCa) is a leading cause of morbidity and mortality, yet the etiology remains uncertain. Meta-analyses show that PrCa risk is reduced by 16% in men with type 2 diabetes (T2D), but the mechanism is unknown. Recent genome-wide association studies and meta-analyses have found single nucleotide polymorphisms (SNPs) that consistently predict T2D risk. We evaluated associations of incident PrCa with 14 T2D SNPs in the Atherosclerosis Risk in Communities (ARIC) study. From 1987-2000, there were 397 incident PrCa cases ascertained from state or local cancer registries among 6,642 men (1,560 blacks and 5,082 whites) aged 45-64 years at baseline. Genotypes were determined by TaqMan assay. Cox proportional hazards models were used to assess the association between PrCa and increasing number of T2D risk-raising alleles for individual SNPs and for genetic risk scores (GRS) comprised of the number of T2D risk-raising alleles across SNPs. Two-way gene-gene interactions were evaluated with likelihood ratio tests. Using additive genetic models, the T2D risk-raising allele was associated with significantly reduced risk of PrCa for IGF2BP2 rs4402960 (hazard ratio [HR]=0.79; P=0.07 among blacks only), SLC2A2 rs5400 (race-adjusted HR=0.85; P=0.05) and UCP2 rs660339 (race-adjusted HR=0.84; P=0.02), but significantly increased risk of PrCa for CAPN10 rs3792267 (race-adjusted HR=1.20; P=0.05). No other SNPs were associated with PrCa using an additive genetic model. However, at least one copy of the T2D risk-raising allele for TCF7L2 rs7903146 was associated with reduced PrCa risk using a dominant genetic model (race-adjusted HR=0.79; P=0.03). These results imply that the T2D-PrCa association may be partly due to shared genetic variation, but these results should be verified since multiple tests were performed. When the combined, additive effects of these SNPs were tested using a GRS, there was nearly a 10% reduction in risk of PrCa per T2D risk-raising allele (race-adjusted HR=0.92; P=0.02). SNPs in IGF2BP2, KCNJ11 and SLC2A2 were also involved in multiple synergistic gene-gene interactions on a multiplicative scale. In conclusion, it appears that the T2D-PrCa association may be due, in part, to common genetic variation. Further knowledge of T2D gene-PrCa mechanisms may improve understanding of PrCa etiology and may inform PrCa prevention and treatment.^
Resumo:
Functional gastrointestinal disorders (FGIDs) are defined as ailments of the mid or lower gastrointestinal tract which are not attributable to any discernable anatomic or biochemical defects.1 FGIDs include functional bowel disorders, also known as persisting abdominal symptoms (PAS). Irritable bowel syndrome (IBS) is one of the most common illnesses classified under PAS.2,3 This is the first prospective study that looks at the etiology and pathogenesis of post-infectious PAS in the context of environmental exposure and genetic susceptibility in a cohort of US travelers to Mexico. Our objective was to identify infectious, genetic and environmental factors that predispose to post infectious PAS. ^ Methods. This is a secondary data analysis of a prospective study on a cohort of 704 healthy North American tourists to Cuernavaca, Morelos and Guadalajara, Jalisco in Mexico. The subjects at risk for Travelers' diarrhea were assessed for chronic abdominal symptoms on enrollment and six months after the return to the US. ^ Outcomes. PAS was defined as disturbances of mid and lower gastrointestinal system without any known pathological or radiological abnormalities, or infectious, or metabolic causes. It refers to functional bowel disease, category C of functional gastrointestinal diseases as defined by the Rome II criterion. PAS was sub classified into Irritable bowel syndrome (IBS) and functional abdominal disease (FAD). ^ IBS is defined as recurrent abdominal pain or discomfort present at least 25% and associated with improvement with defecation, change in frequency and form of stool. FAD encompasses other abdominal symptoms of chronic nature that do not meet the criteria for IBS. It includes functional diarrhea, functional constipation, functional bloating: and unspecified bowel symptoms. ^ Results. Among the 704 travelers studied, there were 202 cases of PAS. The PAS cases included 175 cases of FAD and 27 cases of IBS. PAS was more frequent among subjects who developed traveler's diarrhea in Mexico compared to travelers who remained healthy during the short term visit to Mexico (52 vs. 38; OR = 1.8; CI, 1.3–2.5, P < 0.001). A statistically significant difference was noted in the mean age of subjects with PAS compared to healthy controls (28 vs. 34 yrs; OR = 0.97, CI, 0.95–0.98; P < 0.001). Travelers who experienced multiple episodes, a later onset of diarrhea in Mexico and passed greater numbers of unformed stools were more likely to be identified in PAS group at six months. Participants who developed TD caused by enterotoxigenic E.coli in Mexico showed a 2.6 times higher risk of developing FAD (P = 0.003). Infection with Providencia ssp. also demonstrated a greater risk to developing PAS. Subjects who sought treatment for diarrhea while in Mexico also displayed a significantly lower frequency of IBS at six months follow up (OR = 0.30; CI, 0.10–0.80; P = 0.02). ^ Forty six SNPs belonging to 14 genes were studied. Seven SNPs were associated with PAS at 6 months. These included four SNPs from the Caspase Recruitment Domain-Containing Protein 15 gene (CARD15), two SNPs from Surfactant Pulmonary-Associated Protein D gene (SFTPD) and one from Decay-Accelerating Factor For Complement gene (CD55). A genetic risk score (GRS) was composed based on the 7 SNPs that showed significant association with PAS. A 20% greater risk for PAS was noted for every unit increase in GRS. The risk increased by 30% for IBS. The mean GRS was high for IBS (2.2) and PAS (1.1) compared to healthy controls (0.51). These data suggests a role for these genetic polymorphisms in defining the susceptibility to PAS. ^ Conclusions. The study allows us to identify individuals at risk for developing post infectious IBS (PI-IBS) and persisting abdominal symptoms after an episode of TD. The observations in this study will be of use in developing measures to prevent and treat post-infectious irritable bowel syndrome among travelers including pre-travel counseling, the use of vaccines, antibiotic prophylaxis or the initiation of early antimicrobial therapy. This study also provides insights into the pathogenesis of post infectious PAS and IBS. (Abstract shortened by UMI.)^
Resumo:
Background. The association between a prior history of atopy or other autoimmune diseases and risk of alopecia areata is not well established. ^ Objective. Purpose of this study was to use the National Alopecia Areata Registry database to further investigate the association between history of atopy or other autoimmune diseases and risk of alopecia areata. ^ Methods. A total of 2,613 self-registered sporadic cases (n = 2,055) and controls (n = 558) were included in the present analysis. ^ Results. Possessing a history of any atopy (OR = 2.00; 95% CI 1.50-2.54) or autoimmune disease (OR = 1.73; 95% CI 1.10-2.72) was associated with an increased risk of alopecia areata. There was no trend for possessing a history of more than one atopy or autoimmune disease and increasing risk of alopecia areata. ^ Limitations. Recall, reporting, and recruiting bias are potential sources of limitations in this analysis. ^ Conclusion. This analysis revealed that a prior history of atopy and autoimmune disease was associated with an increased risk of alopecia areata and that the results were consistent for both the severe subtype of alopecia areata (i.e., alopecia totalis and alopecia universalis) and the localized subtype (i.e., alopecia areata persistent).^
Resumo:
Primary cutaneous melanoma is a cancer arising from melanocytes in the skin. In recent decades the incidence of this malignancy has increased significantly. Mortality rates are high for patients with tumors measuring over a few millimeters in thickness. Response rates to conventional radiation and chemotherapy are very low in patients with metastatic melanoma. New therapies targeting melanoma’s aberrant cell signaling pathways such as the MAP Kinase pathway are being developed. Mutations of NRAS and BRAF genes are quite common in cutaneous melanoma and lead to constitutive activation of the MAP Kinase pathway. This study tests the hypothesis that NRAS and BRAF mutations increase as a tumor progresses from the noninvasive radial growth phase (RGP) to the invasive vertical growth phase (VGP). Laser capture microdissection was used to obtain separate, pure tumor DNA samples from the RGP and VGP of thirty primary cutaneous melanomas. PCR was used to amplify NRAS exon 2 and BRAF exon 15 tumor DNA. The amplified DNA was sequenced and analyzed for mutations. An overall mutation rate of 74% was obtained for the twenty-three melanomas in which there were complete sequence results. With the exception of one melanoma NRAS and BRAF mutations were mutually exclusive. All seven NRAS exon 2 mutations involved codon 61. Three of these melanomas had mutations in both the RGP and VGP. The remaining four tumors were wild type for NRAS exon 2 in the RGP but mutated in the VGP. Of the fifteen BRAF exon 15 mutated melanomas all but one involved codon 600. Twelve of the fifteen BRAF exon 15 mutations were the T1799A type. Nine of the fifteen BRAF mutated tumors had the same mutation in both the RGP and VGP. Five of fifteen melanomas had wild type RGP DNA and BRAF exon 15 mutated VGP DNA. A single melanoma had BRAF exon 15 mutated DNA in the RGP and wild type DNA in the VGP. Overall, these results suggest a trend toward the acquisition of NRAS and BRAF mutations as cutaneous melanomas change from a noninvasive to an invasive, potentially deadly cancer.^
Resumo:
Aberrant expression and/or activation of Src Family of non-receptor protein tyrosine kinases (SFKs) occur frequently during progressive stages of multiple types of human malignancies, including prostate cancer. Two SFKs, Src and Lyn, are expressed and implicated in prostate cancer progression. Work in this dissertation investigated the specific roles of Src and Lyn in the prostate tumor progression, and the effects of SFK inhibition on prostate tumor growth and lymph node metastasis in pre-clinical mouse models. ^ Firstly, using a pharmacological inhibitor of SFKs in clinical trials, dasatinib, I demonstrated that SFK inhibition affects both cellular migration and proliferation in vitro. Systemic administration of dasatinib reduced primary tumor growth, as well as development of lymph node metastases, in both androgen-sensitive and -resistant orthotopic prostate cancer mouse models. Immunohistochemical analysis of the primary tumors revealed that dasatinib treatment decreased SFK phosphorylation but not expression, resulting in decreased cellular proliferation and increased apoptosis. For this analysis of immunohistochemical stained tissues, I developed a novel method of quantifying immunohistochemical stain intensity that greatly reduced the inherent bias in analyzing staining intensity. ^ To determine if Src and Lyn played overlapping or distinct roles in prostate cancer tumor growth and progression, Src expression alone was inhibited by small-interfering RNA. The resulting stable cell lines were decreased in migration, but not substantially affected in proliferation rates. In contrast, an analogous strategy targeting Lyn led to stable cell lines in which proliferation rates were significantly reduced. ^ Lastly, I tested the efficacy of a novel SFK inhibitor (KX2-391) targeting peptide substrate-binding domain, on prostate cancer growth and lymph node metastasis in vivo. I demonstrated that KX2-391 has similar effects as dasatinib, an ATP-competitive small molecular inhibitor, on both the primary tumor growth and development of lymph node metastasis in vivo, work that contributed to the first-in-man Phase I clinical trial of KX2-391. ^ In summary, studies in this dissertation provide the first demonstration that Src and Lyn activities affect different cellular functions required for prostate tumor growth and metastasis, and SFK inhibitors effectively reduce primary tumor growth and lymph node metastasis. Therefore, I conclude that SFKs are promising therapeutic targets for treatment of human prostate cancer. ^
Resumo:
Dermal exposure to jet fuel suppresses the immune response. Immune regulatory cytokines, and biological modifiers, including platelet activating factor, prostaglandin E2, and interleukin-10 have all been implicated in the pathway leading to immunosuppression. It is estimated that approximately 260 different hydrocarbons are found in JP-8 (jet propulsion-8) jet fuel, and the identity of the immunotoxic compound is not known. The recent availability of synthetic jet fuel (S-8), which is devoid of aromatic hydrocarbons, made it feasible to design experiments to test the hypothesis that the aromatic hydrocarbons are responsible for jet fuel induced immune suppression. Applying S-8 to the skin of mice does not up-regulate the expression of epidermal cyclooxygenase-2 nor does it induce immune suppression. Adding back a cocktail of 7 of the most prevalent aromatic hydrocarbons found in jet fuel to S-8 up-regulated cyclooxygenase-2 expression and induced immune suppression. Cyclooxygenase-2 induction can be initiated by reactive oxygen species (ROS). JP-8 treated keratinocytes increased ROS production, S-8 did not. Antioxidant pre-treatment blocked jet fuel induced immune suppression and cyclooxygenase-2 up-regulation. Accumulation of reactive oxygen species induces oxidant stress and affects activity of ROS sensitive transcription factors. JP-8 induced activation of NFκB while S-8 did not. Pre-treatment with antioxidants blocked activation of NFκB and parthenolide, an NFκB inhibitor, blocked jet fuel induced immune suppression and cyclooxygenase-2 expression in skin of treated mice. p65 siRNA transfected keratinocytes demonstrated NFκB is critically involved in jet fuel induced COX-2 expression. These findings clearly implicate the aromatic hydrocarbons found in jet fuel as the agents responsible for inducing immune suppression, in part by the production of reaction oxygen species, NFκB dependent up-regulation of cyclooxygenase-2, and the production of immune regulatory factors and cytokines. ^
Resumo:
Allergic asthma is characterized by airflow obstruction, airway hyperresponsiveness (AHR) and chronic airway inflammation. We and others have reported that complement component C3 and the anaphylatoxin C3a receptor promote while C5 protects against the development of the biological and physiological hallmarks of allergic lung disease in mice. In this study, we assessed if the protective responses could be mediated by C5a, an activation-induced C5 cleavage product. Mice with ablation of the C5a receptor (C5aR) either by genetic deletion or by pharmacological blockade exhibited significantly exacerbated AHR compared to allergen-challenged wild-type (WT) mice. However, there were no significant differences in many of the other hallmarks of asthma such as airway infiltration by eosinophils or lymphocytes, pulmonary IL-4-producing cell numbers, goblet cell metaplasia, mucus secretion or total serum IgE levels. In contrast to elevated AHR, numbers of IL-5 and IL-13 producing pulmonary cells, and IL-5 and IL-13 protein levels, were significantly reduced in allergen-challenged C5aR-/- mice compared to allergen-challenged WT mice. Administration of a specific cysteinyl leukotriene receptor 1 (cysLT1R) antagonist before each allergen-challenge abolished AHR in C5aR-/- as well as in WT mice. Pretreatment with a C3aR antagonist dose-dependently reduced AHR in allergen-challenged WT and C5aR-/- mice. Additionally, allergen-induced upregulation of pulmonary C3aR expression was exaggerated in C5aR-/- mice compared to WT mice. In summary, deficiency or antagonism of C5aR in a mouse model of pulmonary allergy increased AHR, which was reversed or reduced by blockade of the cysLT1R and C3aR, respectively. In conclusion, this study suggests that C5a and C5aR mediate protection against AHR by suppressing cysLT and C3aR signaling pathways, which are known to promote AHR. This also supports important and opposing roles of complement components C3a/C3aR and C5a/C5aR in AHR. ^
Resumo:
Naturally occurring genetic variants confer susceptibility to disease in the human population, including in testicular germ cell tumor development. Disease susceptibility loci for testicular germ cell tumors have been identified by genetic mapping in humans and mice. However, the identity of many of the susceptibility genes remains unclear. My study utilized a chromosome substitution strain, the 129.MOLF-Chr 19 (or M19 strain), to identify candidate testicular germ cell tumor susceptibility genes. Males of this strain have a high incidence of germ cell tumors in the testes. By forward genetic approaches, five susceptibility loci were fine-mapped and the genetic interactions were dissected. In addition, I identified three protein-coding genes and one micro-RNA as testicular tumor susceptibility genes by genomic screening. Using reverse genetic approaches, I verified one of the candidates, Splicing factor 1, as a modifier of testicular tumor. Deficiency of SF1 significantly reduces the incidence of testicular tumors in mice. This study highlights the advantage of the 129.MOLF-Chr 19 consomic strain in disease gene identification and validation. It also sets the stage to elucidate the molecular mechanisms of tumorigenesis in the testis. ^
Resumo:
Tuberculosis remains one of the leading causes of death in man due to a single infectious agent. An estimated one-third of the world's population is infected with the causative agent, Mycobacterium tuberculosis (Mtb), despite the availability of the widely used vaccine, BCG. BCG has significantly varying protection rates with the lowest level of protection seen with the most common form of TB, adult pulmonary TB. Thus, numerous studies are being conducted to develop a more efficient vaccine. The ideal candidate vaccine would possess the ability to induce a solid and strong Th1 response, as this is the subset of T cells primarily involved in clearance of the infection. A novel vaccine should also induce such a response that may be recalled and expanded upon subsequent infection. Our group has introduced a mutant of a virulent strain of Mtb which lacks a component of the immunogenic antigen 85 complex (Ag85). Our vaccine, ΔfbpA, does not secrete the fibronectin binding protein Ag85A, and this has shown to lead to its attenuation in both murine macrophages and mice. Previous studies have also proven that ΔfbpA is more protective in mice than BCG against virulent aerosol challenge with Mtb. This study addresses the mechanisms of protection observed with ΔfbpA by phenotyping responding T cells. We first evaluated the ability of dendritic cells to present the mycobacteria to naïve T cells, an in vitro mock of primary immunization. We also measured the response of primed T cells to macrophage-presented mycobacteria to interpret the possible response of a vaccinated host to a boost. We concluded that ΔfbpA can elicit a stronger Th1 response compared to BCG in vitro, and further observed that this enhanced response is at least partly due to the presence of proteins encoded by a region of the genome absent in all strains of BCG. Finally, we observed this heightened Th1 response in the mouse model after primary vaccination and a virulent aerosol challenge. The cytolytic T cell response was also measured after virulent challenge and was found to be superior in the ΔfbpA-treated group when compared to the BCG group. ^