924 resultados para Binary Vector
Resumo:
Este artículo pertenece a una sección de la revista dedicada a psicología social
Resumo:
Moist singular vectors (MSV) have been applied successfully to predicting mid-latitude storms growing in association with latent heat of condensation. Tropical cyclone sensitivity has also been assessed. Extending this approach to more general tropical weather systems here, MSVs are evaluated for understanding and predicting African easterly waves, given the importance of moist processes in their development. First results, without initial moisture perturbations, suggest MSVs may be used advantageously. Perturbations bear similar structural and energy profiles to previous idealised non-linear studies and observations. Strong sensitivities prevail in the metrics and trajectories chosen, and benefits of initial moisture perturbations should be appraised. Copyright © 2009 Royal Meteorological Society
Resumo:
Ecological risk assessments must increasingly consider the effects of chemical mixtures on the environment as anthropogenic pollution continues to grow in complexity. Yet testing every possible mixture combination is impractical and unfeasible; thus, there is an urgent need for models that can accurately predict mixture toxicity from single-compound data. Currently, two models are frequently used to predict mixture toxicity from single-compound data: Concentration addition and independent action (IA). The accuracy of the predictions generated by these models is currently debated and needs to be resolved before their use in risk assessments can be fully justified. The present study addresses this issue by determining whether the IA model adequately described the toxicity of binary mixtures of five pesticides and other environmental contaminants (cadmium, chlorpyrifos, diuron, nickel, and prochloraz) each with dissimilar modes of action on the reproduction of the nematode Caenorhabditis elegans. In three out of 10 cases, the IA model failed to describe mixture toxicity adequately with significant or antagonism being observed. In a further three cases, there was an indication of synergy, antagonism, and effect-level-dependent deviations, respectively, but these were not statistically significant. The extent of the significant deviations that were found varied, but all were such that the predicted percentage effect seen on reproductive output would have been wrong by 18 to 35% (i.e., the effect concentration expected to cause a 50% effect led to an 85% effect). The presence of such a high number and variety of deviations has important implications for the use of existing mixture toxicity models for risk assessments, especially where all or part of the deviation is synergistic.
Resumo:
The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.
Resumo:
Four-dimensional variational data assimilation (4D-Var) combines the information from a time sequence of observations with the model dynamics and a background state to produce an analysis. In this paper, a new mathematical insight into the behaviour of 4D-Var is gained from an extension of concepts that are used to assess the qualitative information content of observations in satellite retrievals. It is shown that the 4D-Var analysis increments can be written as a linear combination of the singular vectors of a matrix which is a function of both the observational and the forecast model systems. This formulation is used to consider the filtering and interpolating aspects of 4D-Var using idealized case-studies based on a simple model of baroclinic instability. The results of the 4D-Var case-studies exhibit the reconstruction of the state in unobserved regions as a consequence of the interpolation of observations through time. The results also exhibit the filtering of components with small spatial scales that correspond to noise, and the filtering of structures in unobserved regions. The singular vector perspective gives a very clear view of this filtering and interpolating by the 4D-Var algorithm and shows that the appropriate specification of the a priori statistics is vital to extract the largest possible amount of useful information from the observations. Copyright © 2005 Royal Meteorological Society
Resumo:
The ECMWF ensemble weather forecasts are generated by perturbing the initial conditions of the forecast using a subset of the singular vectors of the linearised propagator. Previous results show that when creating probabilistic forecasts from this ensemble better forecasts are obtained if the mean of the spread and the variability of the spread are calibrated separately. We show results from a simple linear model that suggest that this may be a generic property for all singular vector based ensemble forecasting systems based on only a subset of the full set of singular vectors.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.
Resumo:
In Uganda, control of vector-borne diseases is mainly in form of vector control, and chemotherapy. There have been reports that acaricides are being misused in the pastoralist systems in Uganda. This is because of the belief by scientists that intensive application of acaricide is uneconomical and unsustainable particularly in the indigenous cattle. The objective of this study was to investigate the strategies, rationale and effectiveness of vector-borne disease control by pastoralists. To systematically carry out these investigations, a combination of qualitative and quantitative research methods was used, in both the collection and the analysis of data. Cattle keepers were found to control tick-borne diseases (TBDs) mainly through spraying, in contrast with the control of trypanosomosis for which the main method of control was by chemotherapy. The majority of herders applied acaricides weekly and used an acaricide of lower strength than recommended by the manufacturers. They used very little acaricide wash, and spraying was preferred to dipping. Furthermore, pastoralists either treated sick animals themselves or did nothing at all, rather than using veterinary personnel. Oxytetracycline (OTC) was the drug commonly used in the treatment of TBDs. Nevertheless, although pastoralists may not have been following recommended practices in their control of ticks and tick-borne diseases, they were neither wasteful nor uneconomical and their methods appeared to be effective. Trypanosomosis was not a problem either in Sembabule or Mbarara district. Those who used trypanocides were found to use more drugs than were necessary.
Resumo:
Recently, various approaches have been suggested for dose escalation studies based on observations of both undesirable events and evidence of therapeutic benefit. This article concerns a Bayesian approach to dose escalation that requires the user to make numerous design decisions relating to the number of doses to make available, the choice of the prior distribution, the imposition of safety constraints and stopping rules, and the criteria by which the design is to be optimized. Results are presented of a substantial simulation study conducted to investigate the influence of some of these factors on the safety and the accuracy of the procedure with a view toward providing general guidance for investigators conducting such studies. The Bayesian procedures evaluated use logistic regression to model the two responses, which are both assumed to be binary. The simulation study is based on features of a recently completed study of a compound with potential benefit to patients suffering from inflammatory diseases of the lung.
The sequential analysis of repeated binary responses: a score test for the case of three time points
Resumo:
In this paper a robust method is developed for the analysis of data consisting of repeated binary observations taken at up to three fixed time points on each subject. The primary objective is to compare outcomes at the last time point, using earlier observations to predict this for subjects with incomplete records. A score test is derived. The method is developed for application to sequential clinical trials, as at interim analyses there will be many incomplete records occurring in non-informative patterns. Motivation for the methodology comes from experience with clinical trials in stroke and head injury, and data from one such trial is used to illustrate the approach. Extensions to more than three time points and to allow for stratification are discussed. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
A score test is developed for binary clinical trial data, which incorporates patient non-compliance while respecting randomization. It is assumed in this paper that compliance is all-or-nothing, in the sense that a patient either accepts all of the treatment assigned as specified in the protocol, or none of it. Direct analytic comparisons of the adjusted test statistic for both the score test and the likelihood ratio test are made with the corresponding test statistics that adhere to the intention-to-treat principle. It is shown that no gain in power is possible over the intention-to-treat analysis, by adjusting for patient non-compliance. Sample size formulae are derived and simulation studies are used to demonstrate that the sample size approximation holds. Copyright © 2003 John Wiley & Sons, Ltd.