994 resultados para Bin
Resumo:
The C-terminal domain of Mycobacterium tuberculosis LexA has been crystallized in two different forms. The form 1 and form 2 crystals belonged to space groups P3(1)21 and P3(1), respectively. Form 1 contains one domain in the asymmetric unit, while form 2 contains six crystallographically independent domains. The structures have been solved by molecular replacement.
Resumo:
In 1-cyclo-hexyl-6,6,8a-trimethyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro2, 3-b]pyrrole-2,4(3H,5H)-dione, C19H27NO3, (I), and the isomorphous compounds 6,6,8a-trimethyl-1-phenyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro2,3-b]p yrrole-2,4(3H,5H)-dione, C19H21NO3, (II), and 6,6,8a-trimethyl-1-(3-pyridyl)-3a,6,7,8a-tetra-hydro-1H-1-benzofuro2, 3-b]pyrrole-2,4(3H,5H)-dione, C18H20N2O3, (III), the tetra-hydro-benzo-dihydro-furo-pyrrolidine ring systems are folded at the cis junction of the five-membered rings, giving rise to a non-planar shape of the tricyclic cores. The dihydro-furan and pyrrolidine rings in (I) are puckered and adopt an envelope conformation. The cyclo-hexene rings adopt a half-chair conformation in all the mol-ecules, while the substituent N-cyclo-hexyl ring in (I) assumes a chair form. Short intra-molecular C-HcO contacts form S(5) and S(6) motifs. The isomorphous compounds (II) and (III) are effectively isostructural, and aggregate into chains via inter-molecular C-HcO hydrogen bonds.
Resumo:
In the title compound, C26H23FN2, the dihedral angle between the 4-fluorophenyl ring and the adjacent phenyl ring is 62.3 (1)degrees. The crystal structure is stabilized by C-H center dot center dot center dot pi interactions.
Resumo:
In the crystal structure of the title salt, C7H7Cl2N2O2+ center dot Cl-, the chloride anions participate in extensive hydrogen bonding with the aminium cations and indirectly link the molecules through multiple N+-H center dot center dot center dot Cl- salt bridges. There are two independent molecules in the asymmetric unit, related by a pseudo-inversion center. The direct intermolecular coupling is established by C-H center dot center dot center dot O, C-H center dot center dot center dot Cl and C-Cl center dot center dot center dot Cl- interactions. A rare three-center (donor bifurcated) C-H center dot center dot center dot (O,O) hydrogen bond is observed between the methylene and nitro groups, with a side-on intramolecular component of closed-ring type and a head-on intermolecular component.
Resumo:
C21H27NO2, Mr=325.5 , orthorhombic,P21212,, a = 7.516 (2), b = 13.430 (2), c =18.047 (2) A, U= 1821.79 A 3, Z = 4, D x =1.186 Mg m -a, 2(Cu Ka) = 1.5418 A, # = 0.56 mm -1, F(000) = 704, T= 293 K, final R = 0.04 for 1892 reflections with I _> 3a(I). Ring A is planar, and rings B and C adopt a chair conformation. Rings D and E are envelopes, with C(14) and C(17) displaced from their respective planes by 0.643 (3) and 0.482 (3)A. The ring system A/B shows quasi-trans fusion, whilst ring systems B/C and C/D are trans fused about C(8)-C(9) and C(13)-C(14) respectively. The D/E junction shows cis fusion.
Resumo:
C2H2N203.H20, Mr= 120.07, monoclinic,P21/c, a= 5.011 (1), b= 11.796(2), c= 7.689 (2)A,fl= 95.22 (2) ° , V= 452.61 A 3, Z= 4, Dx= 1.76, D m = 1.75 gcm -3, /].(Cu Ks) = 1.5418 A, g = 14-0 cm -l,F(000) = 248, T = 293 K, crystal quality was poor and the final R =0.107, wR =0.090 for 881 observed reflections. The compound is derived from a novel form of the monopropellant oxalohydroxamic acid. The two exocyclic C-O bond lengths of 1.240 (3) and 1.228 (4)A indicate double bonds. The C-N bond lengths of 1.334 (4), 1.390 (4) and 1.359 (4) A are characteristic of the amide bond. The N atom covalently bonded to the two carbonyl C atoms acts as a proton donor in an intermolecular hydrogen bond to the ring O atom: N1...O3i = 2.854 ]k (i =x-- 1,y, z), H...O = 2.15 A, N-H...O = 159 °.
Resumo:
CI3H17N5Os.C2H6OS, Mr=401.23, orthorhombic,P21212 p grown from Me2SO, a = 10.749 (2),b = 13.219 (2), c = 14.056 (2) A, V= 1997-23 A 3, Z =4, D_=1.40, D x=l.335Mgm -3, 2(CuKa)= 1.5418/~', g = 1.694 mm -~, F(000) = 848.00, T=293K, R =0.0538, wR =0.0634 for 2105 unique reflections with F > 3o(F). The asymmetric unit contains one nucleoside molecule with a disordered solvent Me2S_O molecule. The geometry about the C(4')-C(5') bond is gauche-gauche. The guanosine base is in the anti conformation with the furanose ring having C(3')-exo (E 3) puckering. The bases do not show any stacking in contrast to other guanosine-containing structures. The crystal structure is stabilized by N--H...N and N--H...O hydrogen bonding.
Resumo:
CI2HI4N206, Mr=282"3, orthorhombic,P21212 t, a = 10.412 (2), b = 14.936 (2), c =16.651(3),/k, V=2589.46A 3, Z--8, Din= 1.450, D x = 1.447 Mg m -3, 2(Cu Kct) = 1.5418/~, # =0.902mm -~, F(000)-- 1184.00, T= 293 K, R = 0.039, wR--0.038 for 2548 unique reflections with F > 3a(F). The two crystallographically independent molecules in the asymmetric unit have similar geome-tries with the ribose ring having an O(4')-exo, C(4')-endo pucker and the uracil base in the anti conformation.The geometry about the exocyclic C(4')-C(5') bond in both molecules is gauche-gauche. The dioxolane ring assumes twist conformations in both molecules.
Resumo:
C~HaO 4, Mr=204.2, monoclinic, P2Jn,a=3.900(1), =37.530(6), c=6.460(1)A, fl=103.7 (1) °, V= 918.5 (5) A 3, Z = 4, D m = 1.443, D x --- 1.476 Mg m -3, Cu Ks, 2 = 1.5418 ,/k, /t = 0.86 mm -~, F(000) = 424, T= 293 K, R = 0.075 for 1019 significant reflections. Molecules pack in fl-type stacking mode which is characterized by the close packing of parallel and nearly planar reactive double bonds with a separation of 3.900/~ along the a axis.The syn head-head dimer obtained is the direct consequence of this packing arrangement. Molecular packing is stabilized by intermolecular C-H...O hydrogen bonding. Analysis of acetoxy...acetoxy interactions in the acetoxy compounds retrieved from the Cambridge Structural Database reveal that the majority of them are anti-dipolar.
Resumo:
C15H22N204.H20 , Mr= 312.37, monoclinic,P21, a=5.577(2), b=8.686(2), c= 16.228 (2) A,fl=92.63(2) ° , V=785(1)A 3, Z=2, O =1.34,Dx= 1.32Mgm -3, CuKa, 2= 1.54184'~, /2=0.78 mm -I, F(000) = 320, T= 293 K. The final R value for 1607 observed reflections ll,,>_3tr(l,,)l is 0.039. The terminal N 1 is protonated and the dipeptide exists as a zwitterion. The crystal structure is stabilized by extensive hydrogen-bonding interactions involving N and O atoms, with N...O in the range 2.65 (1)-2.95 (1) ,/~ and O...O in the range 2.60 (1)-2.78 (1) A.
Resumo:
C~0H~gN5Os.2H20, Mr=325.32, monoclinic,P2~, a = 12.029 (2), b=4.904 (2), c=13.215 (2) A, fl= 107.68 (2) ° , F= 743 (1) A 3, Z= 2,D m = 1-45, D x = 1.45 Mg m -3, Cu Ka, 2 = 1.54184 A,fl= 1.01mm -1, F(000)=348, T=293K. The final R value for 1277 observed reflections 110 >_ 3tr(Io)l is 0.031. The dipeptide exists as a zwitterion. The arginyl side-chain conformation is similar to that found in arginyl-glutamic acid [Pandit, Seshadri & Viswamitra (1983). Acta Cryst. C39, 1669-16721. The guanidyl group forms a pair of hydrogen bonds with oxygen atoms of the backbone carboxyl group. The crystal structure is also stabilized by -bonding interactions involving both water molecules.
Resumo:
CsH9N304, M r= 175.1, orthorhombic,P212~2 ~, a = 7.486 (1), b = 9.919 (2), c =20.279 (2) A, V= 1505.8 A 3, z = 8, D x = 1.54, D m = 1.60 Mg m -3, ~,(Cu Ka) = 1.5418 A, g = 1. I I mm -~, F(000) = 736, T = 300 K, final R = 0.032 for 1345 observed reflections. The two independent molecules in the asymmetric unit are related by a pseudo twofold axis, with the asparagine side chains having different conformations [X 2 being -132.1 (3) and 139.6 (2)°]. The crystal structure is stabilized by extensive hydrogen bonding, with a specific interaction between the carboxyl group of one molecule and the carbamoyl group of another forming hydrogen-bonded chains.
Resumo:
(I): C15H1402, Mr---226.27, triclinic, Pi,a=8.441 (2), b= 10.276 (1), c= 15.342 (2)A, a=91.02 (2), ~ t= 79.26 (2), y= 105.88 (2) °, V=1256.8 (4)A 3, Z=4, D,,= 1.209 (flotation in KI),D x - 1.195 g cm -3, #(Mo, 2 = 0.7107/~) = 0.44 cm -~,F(000) = 480, T= 293 K, R -- 0.060 for 1793 significant reflections. (II): C~THlsO2, Mr= 254.83, orthorhombic, Pca21, a=8.476 (1); b= 16.098 (3), c=10.802(3)A, V=1473.9 (5) A s, Z=4, Dm=1.161 (flotation in KI), Dx= 1.148gem -3, /~(Mo, 2=0.7107 A) =0.41 cm -~, F(000) = 544, T= 293 K, R = 0.071 for 867 significant reflections. Both (I) and (II) crystallize in a cisoid conformation for the carbonyl group and alkoxy groups. Compounds (I) and (II) are photostable on irradiation in the solid state in spite of the favourable conformation of the functional groups for intramolecular H abstraction. Absence of photoreaction of (I)and (II) in the solid state is rationalized in the light of unfavourable intramolecular geometry.
Resumo:
C28H48N2Oa.H2 O, Mr=494.7, orthorhombic,P2~2~2~, a = 7.634 (2), b = 11.370 (2), c=34. 167 (4) A, V = 2966 (2) A 3, Z = 4, D m = 1.095,D x -- 1. 108 g cm -3, Mo Kct, 2 -- 0.7107 ,/k, ~ =0.43 cm -~, F(000) = 1088.0, T= 293 K, R = 0.061 for 1578 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is negligible (1/100th of the urea standard). The observed low second-order nonlinear response has been attributed to the unfavourable packing of the molecules in the crystal lattice.