919 resultados para Best algebraic approximation
Resumo:
A new approximate solution for the first passage probability of a stationary Gaussian random process is presented which is based on the estimation of the mean clump size. A simple expression for the mean clump size is derived in terms of the cumulative normal distribution function, which avoids the lengthy numerical integrations which are required by similar existing techniques. The method is applied to a linear oscillator and an ideal bandpass process and good agreement with published results is obtained. By making a slight modification to an existing analysis it is shown that a widely used empirical result for the asymptotic form of the first passage probability can be deduced theoretically.
Resumo:
The performance of algebraic flame surface density (FSD) models has been assessed for flames with nonunity Lewis number (Le) in the thin reaction zones regime, using a direct numerical simulation (DNS) database of freely propagating turbulent premixed flames with Le ranging from 0.34 to 1.2. The focus is on algebraic FSD models based on a power-law approach, and the effects of Lewis number on the fractal dimension D and inner cut-off scale η i have been studied in detail. It has been found that D is strongly affected by Lewis number and increases significantly with decreasing Le. By contrast, η i remains close to the laminar flame thermal thickness for all values of Le considered here. A parameterisation of D is proposed such that the effects of Lewis number are explicitly accounted for. The new parameterisation is used to propose a new algebraic model for FSD. The performance of the new model is assessed with respect to results for the generalised FSD obtained from explicitly LES-filtered DNS data. It has been found that the performance of the most existing models deteriorates with decreasing Lewis number, while the newly proposed model is found to perform as well or better than the most existing algebraic models for FSD. © 2012 Mohit Katragadda et al.
Resumo:
A direct numerical simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with a range of different turbulent Reynolds numbers has been used to assess the performance of algebraic flame surface density (FSD) models based on a fractal representation of the flame wrinkling factor. The turbulent Reynolds number Ret has been varied by modifying the Karlovitz number Ka and the Damköhler number Da independently of each other in such a way that the flames remain within the thin reaction zones regime. It has been found that the turbulent Reynolds number and the Karlovitz number both have a significant influence on the fractal dimension, which is found to increase with increasing Ret and Ka before reaching an asymptotic value for large values of Ret and Ka. A parameterisation of the fractal dimension is presented in which the effects of the Reynolds and the Karlovitz numbers are explicitly taken into account. By contrast, the inner cut-off scale normalised by the Zel'dovich flame thickness ηi/δz does not exhibit any significant dependence on Ret for the cases considered here. The performance of several algebraic FSD models has been assessed based on various criteria. Most of the algebraic models show a deterioration in performance with increasing the LES filter width. © 2012 Mohit Katragadda et al.
Resumo:
Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.
Resumo:
A recent trend in spoken dialogue research is the use of reinforcement learning to train dialogue systems in a simulated environment. Past researchers have shown that the types of errors that are simulated can have a significant effect on simulated dialogue performance. Since modern systems typically receive an N-best list of possible user utterances, it is important to be able to simulate a full N-best list of hypotheses. This paper presents a new method for simulating such errors based on logistic regression, as well as a new method for simulating the structure of N-best lists of semantics and their probabilities, based on the Dirichlet distribution. Off-line evaluations show that the new Dirichlet model results in a much closer match to the receiver operating characteristics (ROC) of the live data. Experiments also show that the logistic model gives confusions that are closer to the type of confusions observed in live situations. The hope is that these new error models will be able to improve the resulting performance of trained dialogue systems. © 2012 IEEE.
Resumo:
Numerically well-conditioned state-space realisations for all-pass systems, such as Padé approximations to exp(-s), are derived that can be computed using exact integer arithmetic. This is then applied to the a series of functions of exp(-s). It is also shown that the H-infinity norm of the transfer function from the input to the state of a balanced realisation of the Padé approximation of exp(-s) is unity. © 2012 IEEE.
Resumo:
Flapping wings often feature a leading-edge vortex (LEV) that is thought to enhance the lift generated by the wing. Here the lift on a wing featuring a leading-edge vortex is considered by performing experiments on a translating flat-plate aerofoil that is accelerated from rest in a water towing tank at a fixed angle of attack of 15°. The unsteady flow is investigated with dye flow visualization, particle image velocimetry (PIV) and force measurements. Leading-and trailing-edge vortex circulation and position are calculated directly from the velocity vectors obtained using PIV. In order to determine the most appropriate value of bound circulation, a two-dimensional potential flow model is employed and flow fields are calculated for a range of values of bound circulation. In this way, the value of bound circulation is selected to give the best fit between the experimental velocity field and the potential flow field. Early in the trajectory, the value of bound circulation calculated using this potential flow method is in accordance with Kelvin's circulation theorem, but differs from the values predicted by Wagner's growth of bound circulation and the Kutta condition. Later the Kutta condition is established but the bound circulation remains small; most of the circulation is contained instead in the LEVs. The growth of wake circulation can be approximated by Wagner's circulation curve. Superimposing the non-circulatory lift, approximated from the potential flow model, and Wagner's lift curve gives a first-order approximation of the measured lift. Lift is generated by inertial effects and the slow buildup of circulation, which is contained in shed vortices rather than bound circulation. © 2013 Cambridge University Press.
IGBT converters conducted EMI analysis by controlled multiple-slope switching waveform approximation
Resumo:
IGBTs realise high-performance power converters. Unfortunately, with fast switching of the IGBT-free wheel diode chopper cell, such circuits are intrinsic sources of high-level EMI. Therefore, costly EMI filters or shielding are normally needed on the load and supply side. In order to design these EMI suppression components, designers need to predict the EMI level with reasonable accuracy for a given structure and operating mode. Simplifying the transient IGBT switching current and voltage into a multiple slope switching waveform approximation offers a feasible way to estimate conducted EMI with some accuracy. This method is dependent on the availability of high-fidelity measurements. Also, that multiple slope approximation needs careful and time-costly IGBT parameters optimisation process to approach the real switching waveform. In this paper, Active Voltage Control Gate Drive(AVC GD) is employed to shape IGBT switching into several defined slopes. As a result, Conducted EMI prediction by multiple slope switching approximation could be more accurate, less costly but more friendly for implementation. © 2013 IEEE.
Resumo:
The exact calculation of mode quality factor Q is a key problem in the design of high-Q photonic crystal nanocavity. On the basis of further investigation on conventional Pade approximation, FDM and DFT, Pade approximation with Baker's algorithm is enhanced through introducing multiple frequency search and parabola interpolation. Though Pade approximation is a nonlinear signal processing method and only short time sequence is needed, we find the different length of sequence requirements for 2D and 3D FDTD, which is very important to obtain convergent and accurate results. By using the modified Pade approximation method and 3D FDTD, the 2D slab photonic crystal nanocavity is analyzed and high-Q multimode can be solved quickly instead of large range high-resolution scanning. Monitor position has also been investigated. These results are very helpful to the design of photonic crystal nanocavity devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Pade approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Pade approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Pade approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Pade approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials. (C) 2009 Optical Society of America
Resumo:
The propagation losses in single-line defect waveguides in a two-dimensional (2D) square-lattice photonic crystal (PC) consisted of infinite dielectric rods and a triangular-lattice photonic crystal slab with air holes are studied by finite-difference time-domain (FDTD) technique and a Pade approximation. The decaying constant beta of the fundamental guided mode is calculated from the mode frequency, the quality factor (Q-factor) and the group velocity v(g) as beta = omega/(2Qv(g)). In the 2D square-lattice photonic crystal waveguide (PCW), the decaying rate ranged from 10(3) to 10(-4) cm(-1) can be reliably obtained from 8 x 10(3)-item FDTD output with the FDTD computing time of 0.386 ps. And at most 1 ps is required for the mode with the Q-factor of 4 x 10(11) and the decaying rate of 10(-7) cm(-1). In the triangular-lattice photonic crystal slab, a 10(4)-item FDTD output is required to obtain a reliable spectrum with the Q-factor of 2.5 x 10(8) and the decaying rate of 0.05 cm(-1). (c) 2004 Elsevier B.V. All rights reserved.