964 resultados para Bayesian Population Modelling
Resumo:
Two previous papers in this series (Nelson et al., this issue) described the use of the Agricultural Production Systems Simulator (APSIM) to simulate the effect of erosion on maize yields from open-field farming and hedgerow intercropping in the Philippine uplands. In this paper, maize yields simulated with APSIM are used to compare the economic viability of intercropping maize between leguminous shrub hedgerows with that of continuous and fallow open-field farming of maize. The analysis focuses on the economic incentives of upland farmers to adopt hedgerow intercropping, discussing farmers' planning horizons, access to credit and security of land tenure, as well as maize pricing in the Philippines. Insecure land tenure has limited the planning horizons of upland farmers, and high establishment costs reduce the economic viability of hedgerow intercropping relative to continuous and fallow open-field farming in the short term, In the long term, high discount rates and share-tenancy arrangements in which landlords do not contribute to establishment costs reduce the economic viability of hedgerow intercropping relative to fallow open-field farming, (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A prevalence study of Parkinson's disease (PD) was conducted in the rural town of Nambour, Australia. There were 5 cases of PD in a study population of 1207, yielding a crude prevalence ratio of 414 per 100,000 (95% confidence interval; 53-775). We performed a separate case-control study involving 224 patients with FD and 310 controls from South East Queensland and Central West New South Wales, to determine which factors increase the risk for PD in Australia. A positive family history of PD was the strongest risk factor for the development of the disease (odds ratio = 3.4; p < 0.001). In addition, rural residency was a significant risk factor for PD (odds ratio = 1.8, p < 0.001). Hypertension, stroke and well water ingestion were inversely correlated with the development of PD. There was no significant difference between patients and controls for exposure to herbicides and pesticides, head injury, smoking or depression. The high prevalence of PD in Nambour may be explained by rural residency. However, the most significant risk factor for PD was a positive family history. This demonstrates the need for improved understanding of the genetic nature of the disease.
Resumo:
We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
In this paper, we develop a simple four parameter population balance model of in vivo neutrophil formation following bone marrow rescue therapy. The model is used to predict the number and type of neutrophil progenitors required to abrogate the period of severe neutropenia that normally follows a bone marrow transplant. The estimated total number of 5 billion neutrophil progenitors is consistent with the value extrapolated from a human trial. The model provides a basis for designing ex vivo expansion protocols.
Resumo:
Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
We use the finite element method to solve reactive mass transport problems in fluid-saturated porous media. In particular, we discuss the mathematical expression of the chemical reaction terms involved in the mass transport equations for an isothermal, non-equilibrium chemical reaction. It has turned out that the Arrhenius law in chemistry is a good mathematical expression for such non-equilibrium chemical reactions especially from the computational point of view. Using the finite element method and the Arrhenius law, we investigate the distributions of PH (i.e. the concentration of H+) and the relevant reactive species in a groundwater system. Although the main focus of this study is on the contaminant transport problems in groundwater systems, the related numerical techniques and principles are equally applicable to the orebody formation problems in the geosciences. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
This paper summarizes the processes involved in designing a mathematical model of a growing pasture plant, Stylosanthes scabra Vog. cv. Fitzroy. The model is based on the mathematical formalism of Lindenmayer systems and yields realistic computer-generated images of progressive plant geometry through time. The processes involved in attaining growth data, retrieving useful growth rules, and constructing a virtual plant model are outlined. Progressive output morphological data proved useful for predicting total leaf area and allowed for easier quantification of plant canopy size in terms of biomass and total leaf area.
Resumo:
We use the finite element method to model and predict the dissipative structures of chemical species for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. In particular, we explore the conditions under which dissipative structures of the species may exist in the Brusselator type of nonequilibrium chemical reaction. Since this is the first time the finite element method and related strategies have been used to study the chemical instability problems in a fluid-saturated porous medium, it is essential to validate the method and strategies before they are put into application. For this purpose, we have rigorously derived the analytical solutions for dissipative structures of chemical species in a benchmark problem, which geometrically is a square. Comparison of the numerical solutions with the analytical ones demonstrates that the proposed numerical method and strategy are robust enough to solve chemical instability problems in a fluid-saturated porous medium. Finally, the related numerical results from two application examples indicate that both the regime and the magnitude of pore-fluid flow have significant effects on the nature of the dissipative structures that developed for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. The motivation for this study is that self-organization under conditions of pore-fluid flow in a porous medium is a potential mechanism of the orebody formation and mineralization in the upper crust of the Earth. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
PI kinematic trajectory model is used to investigate potential pathways of dust transport from Australia to New Zealand. Historically, these have been assumed to follow rather direct west-east trajectories spanning 2 to 3 days, often resulting in red snow events in the Southern Alps of New Zealand. However, results from the present study which examined the route taken by air parcels originating in southern Australia during dust storms on 24 and 25 May 1994, indicate that trans-Tasman dust transport trajectories are more diverse than previously thought, and display considerable variation during single events. These mon divergent pathways tie in more closely with aeolian dust sedimentation patterns identified by ocean coring in the Tasman Sea, and may account for the deposition of Australian dust on sub-Antarctic islands located well south of the Australian continent. Copyright 2000 John Wiley Sons, Ltd.
Resumo:
We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of internal states that can be completely decoupled fi om the dissipative interactions (responsible for decoherence) and an external driving laser field. These superpositions, known as dark or trapping states, can he completely stable or can coherently interact with the remaining states. We examine the master equation describing the dissipative evolution of the system and identify conditions for population trapping and also classify processes that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay rates. in particular, we find that the trapping conditions can involve both coherent and dissipative interactions, and depending on the energy level structure of the system, the population can be trapped in a linear superposition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external fields or, in some cases. in one of the excited states of the system. A comprehensive analysis is presented of the different processes that are responsible for population trapping, and we illustrate these ideas with three examples of two coupled systems: single V- and Lambda-type three-level atoms and two nonidentical tao-level atoms, which are known to exhibit dark states. We show that the effect of population trapping does not necessarily require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the vacuum-induced coherent coupling between the systems could be easily observed in Lambda-type atoms. Our analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a maximally entangled state which is completely decoupled from the dissipative interaction.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.