991 resultados para BOND-VALENCE PARAMETERS
Resumo:
The present investigation analyses the thermodynamic behaviour of the surfaces and adsorption as a function of temperature and composition in the Fe-S-O melts based on the Butler's equations. The calculated-values of the surface tensions exhibit an elevation or depression depending on the type of the added solute at a concentration which coincides with that already present in the system. Generally, the desorption of the solutes as a function of temperature results in an initial increase followed by a decrease in the values of the surface tension. The observations are analyzed based on the surface interaction parameters which are derived in the present research.
Resumo:
Compounds of the type, LaAFeNbO(6) (A = Ca Sr) have been synthesized to study the electrical and magnetic properties and to examine valence degeneracy. The results show that valence degeneracy is not operative and the compounds are insulating. Magnetic susceptibility data show that part of the Fe is in Fs(2+) state, thus oxidizing part of Nb4+ to Nb5+ by an internal redox mechanism. The presence of mixed valent Fe is confirmed by Mossbauer spectra. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Mulberry fiber (Bivoltine) and non-mulberry fiber (Tassar) were subjected to stress-strain studies and the corresponding samples were examined using wide angle X-ray scattering studies. Here we have two different characteristic stress-strain curves and this has been correlated with changes in crystallite shape ellipsoids in all the fibers. Exclusive crystal structure studies of Tassar fibers show interesting feature of transformation from antiparallel chains to parallel chains.
Resumo:
The serendipitous observation of a C-H...O hydrogen bond mediated polypeptide chain reversal in synthetic peptide helices has led to a search for the occurrence of a similar motif in protein structures. From a dataset of 634 proteins, 1304 helices terminating in a Schellman motif have been examined. The C-H...O interaction between the T - 4 (CH)-H-alpha and T + 1 C=O group (C...O 3.5 Angstrom) becomes possible only when the T + 1 residue adopts an extended beta conformation (T is defined as the helix terminating residue adopting an alpha(L) conformation). In all, 111 examples of this chain reversal motif have been identified and the compositional and conformational. preferences at positions T - 4, T, and T + 1 determined. A marked preference for residues like Set, Glu and Gln is observed at T - 4 position with the motif being further stabilized by the formation of a side-chain-backbone O...H-N hydrogen bond involving the side-chain of residue T - 4 and the N-H group of residue T + 3. In as many as 57 examples, the segment following the helix was extended with three to four successive residues in beta conformation. In a majority of these cases, the succeeding beta strand lies approximately antiparallel with the helix, suggesting that the backbone C-H...O interactions may provide a means of registering helices and strands in an antiparallel orientation. Two examples were identified in which extended registry was detected with two sets of C-H...O hydrogen bonds between (T - 4) (CH)-H-alpha...C=O (T + 1) and (T - 8) (CH)-H-alpha...C=O (T + 3). 0 2002 Published by Elsevier Science Ltd.
Resumo:
This paper presents an assessment of the flexural behavior of 15 fully/partially prestressed high strength concrete beams containing steel fibers investigated using three-dimensional nonlinear finite elemental analysis. The experimental results consisted of eight fully and seven partially prestressed beams, which were designed to be flexure dominant in the absence of fibers. The main parameters varied in the tests were: the levels of prestressing force (i.e, in partially prestressed beams 50% of the prestress was reduced with the introduction of two high strength deformed bars instead), fiber volume fractions (0%, 0.5%, 1.0% and 1.5%), fiber location (full depth and partial depth over full length and half the depth over the shear span only). A three-dimensional nonlinear finite element analysis was conducted using ANSYS 5.5 [Theory Reference Manual. In: Kohnke P, editor. Elements Reference Manual. 8th ed. September 1998] general purpose finite element software to study the flexural behavior of both fully and partially prestressed fiber reinforced concrete beams. Influence of fibers on the concrete failure surface and stress-strain response of high strength concrete and the nonlinear stress-strain curves of prestressing wire and deformed bar were considered in the present analysis. In the finite element model. tension stiffening and bond slip between concrete and reinforcement (fibers., prestressing wire, and conventional reinforcing steel bar) have also been considered explicitly. The fraction of the entire volume of the fiber present along the longitudinal axis of the prestressed beams alone has been modeled explicitly as it is expected that these fibers would contribute to the mobilization of forces required to sustain the applied loads across the crack interfaces through their bridging action. A comparison of results from both tests and analysis on all 15 specimens confirm that, inclusion of fibers over a partial depth in the tensile side of the prestressed flexural structural members was economical and led to considerable cost saving without sacrificing on the desired performance. However. beams having fibers over half the depth in only the shear span, did not show any increase in the ultimate load or deformational characteristics when compared to plain concrete beams. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Vapour adsorption refrigeration systems (VAdS) have the advantage of scalability over a wide range of capacities ranging from a few watts to several kilowatts. In the first instance, the design of a system requires the characteristics of the adsorbate-adsorbent pair. Invariably, the void volume in the adsorbent reduces the throughput of the thermal compressor in a manner similar to the clearance volume in a reciprocating compressor. This paper presents a study of the activated carbon +HFC-134a (1,1,1,2-tetrafluoroethane) system as a possible pair for a typical refrigeration application. The aim of this study is to unfold the nexus between the adsorption parameters, achievable packing densities of charcoal and throughput of a thermal compressor. It is shown that for a thermal compressor, the adsorbent should not only have a high surface area, but should also be able to provide a high packing density. Given the adsorption characteristics of an adsorbent-adsorbate pair and the operating conditions, this paper discloses a method for the calculation of the minimum packing density necessary for an effective throughput of a thermal compressor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Eosinophil Cationic Protein (ECP) is a member of RNase A superfamily which carries out the obligatory catalytic role of cleaving RNA. It is involved in a variety of biological functions. Molecular dynamics simulations followed by essential dynamics analysis on this protein are carried out with the goal of gaining insights into the dynamical properties at atomic level. The top essential modes contribute to subspaces and to the transition phase. Further, the sidechain-sidechain/sidechain-mainchain hydrogen bond clusters are analyzed in the top modes, and compared with those of crystal structure. The role of residues identified by these methods is discussed in the context of concerted motion, structure and stability of the protein.
Resumo:
The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than 100 ps. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5 kcal/mol.
Resumo:
An experimental investigation on the bond strength of the interface between mortar and aggregate is reported. Composite compact specimens were used for applying Mode I and Mode 11 loading effects. The influence of the type of mortar and type of aggregate and its roughness on the bond strength of the interface has been studied. It has been observed that the bond strength of the interface in tension is significantly low, though the mortars exhibited higher strength. The highest tensile bond strength values have been observed with rough concrete surface with M-13 mortar. The bond strength of the interface in Mode I load depends on the type of aggregate surface and its roughness, and the type of mortar, The bond strength of the interface between mortar M-13 cast against rough concrete in direct tension seems to be about one third of the strength of the mortar. However, it is about 1/20th to 1/10th with the mortar M-12 in sandwiched composite specimens. The bond strength of the interface in shear (Mode IT) significantly increases as the roughness and the phase angle of the aggregate surface increase. The strength of mortar on the interface bond strength has been very significant. The sandwiched composite specimens show relatively low bond strength in Mode I loading. The behavior of the interface in both Mode I and Mode 11 loading effects has been brittle, indicating catastrophic failure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We consider the breaking of a polymer molecule which is fixed at one end and is acted upon by a force at the other. The polymer is assumed to be a linear chain joined together by bonds which satisfy the Morse potential. The applied force is found to modify the Morse potential so that the minimum becomes metastable. Breaking is just the decay of this metastable bond, by causing it to go over the barrier. Increasing the force causes the potential to become more and more distorted and eventually leads to the disappearance of the barrier. The limiting force at which the barrier disappears is D(e)a/2,D-e with a the parameters characterizing the Morse potential. The rate of breaking is first calculated using multidimensional quantum transition state theory. We use the harmonic approximation to account for vibrations of all the units. It includes tunneling contributions to the rate, but is valid only above a certain critical temperature. It is possible to get an analytical expression for the rate of breaking. We have calculated the rate of breaking for a model, which mimics polyethylene. First we calculate the rate of breaking of a single bond, without worrying about the other bonds. Inclusion of other bonds under the harmonic approximation is found to lower this rate by at the most one order of magnitude. Quantum effects are found to increase the rate of breaking and are significant only at temperatures less than 150 K. At 300 K, the calculations predict a bond in polyethylene to have a lifetime of only seconds at a force which is only half the limiting force. Calculations were also done using the Lennard-Jones potential. The results for Lennard-Jones and Morse potentials were rather different, due to the different long-range behaviors of the two potentials. A calculation including friction was carried out, at the classical level, by assuming that each atom of the chain is coupled to its own collection of harmonic oscillators. Comparison of the results with the simulations of Oliveira and Taylor [J. Chem. Phys. 101, 10 118 (1994)] showed the rate to be two to three orders of magnitude higher. As a possible explanation of discrepancy, we consider the translational motion of the ends of the broken chains. Using a continuum approximation for the chain, we find that in the absence of friction, the rate of the process can be limited by the rate at which the two broken ends separate from one another and the lowering of the rate is at the most a factor of 2, for the parameters used in the simulation (for polyethylene). In the presence of friction, we find that the rate can be lowered by one to two orders of magnitude, making our results to be in reasonable agreement with the simulations.
Resumo:
Azophenol complexes of formulation [(η6-p-cymene)RuCl(Ln)] (1–6, n=1–6) were prepared by two synthetic methods involving either an oxygen insertion to the Ru---C bond in cycloruthenated precursors forming complexes 1 and 2 or from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with azophenol ligands (HL3–HL6) in the presence of sodium carbonate in CH2Cl2. The molecular structure of the 1-(phenylazo)-2-naphthol complex has been determined by X-ray crystallography. The complex has a η6-p-cymene group, a chloride and a bidentate N,O-donor azophenol ligand. The complexes have been characterized from NMR spectral data. The catalytic activity of the complexes has been studied for the conversion of acetophenone to the corresponding alcohol in the presence of KOH and isopropanol. Complexes 4 and 6 having a methoxy group attached to the ortho-position of the phenylazo moiety and 2 with a methyl group in the meta-position of the phenolic moiety show high percentage conversion (>84%).
Resumo:
Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.
Resumo:
Unintentionally doped homoepitaxial InSb films have been grown by liquid phase epitaxy employing ramp cooling and step cooling growth modes. The effect of growth temperature, degree of supercooling and growth duration on the surface morphology and crystallinity were investigated. The major surface features of the grown film like terracing, inclusions, meniscus lines, etc are presented step-by-step and a variety of methods devised to overcome such undesirable features are described in sufficient detail. The optimization of growth parameters have led to the growth of smooth and continuous films. From the detailed morphological, X-ray diffraction, scanning electron microscopic and Raman studies, a correlation between the surface morphology and crystallinity has been established.