968 resultados para BIOLOGICAL MARKERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell‑Counting kit‑8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) in ageing is a burden on health systems worldwide. Rat models of age-related CKD linked with obesity and hypertension were used to investigate alterations in oxidant handling and energy metabolism to identify gene targets or markers for age-related CKD. Young adult (3 months) and old (21–24 months) spontaneously-hypertensive (SHR), normotensive Wistar-Kyoto (WKY) and Wistar rats (normotensive, obese in ageing) were compared for renal functional and physiological parameters, renal fibrosis and inflammation, oxidative stress (hemeoxygenase-1/HO-1), apoptosis and cell injury (including Bax:Bcl-2), phosphorylated and non-phosphorylated forms of oxidant and energy sensing proteins (p66Shc, AMPK), signal transduction proteins (ERK1/2, PKB), and transcription factors (NF-κB, FoxO1). All old rats were normoglycemic. Renal fibrosis, tubular epithelial apoptosis, interstitial macrophages and myofibroblasts (all p < 0.05), p66Shc/phospho-p66 (p < 0.05), Bax/Bcl-2 ratio (p < 0.05) and NF-κB expression (p < 0.01) were highest in old obese Wistars. Expression of phospho-FoxO/FoxO was elevated in old Wistars (p < 0.001) and WKYs (p < 0.01). SHRs had high levels in young and old rats. Expression of PKB, phospho-PKB, ERK1/2 and phospho-ERK1/2 were significantly elevated in all aged animals. These results suggest that obesity and hypertension have differing oxidant handling and signalling pathways that act in the pathogenesis of age-related CKD

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This experiment examined whether trait regulatory focus moderates the effects of task control on stress reactions during a demanding work simulation. Regulatory focus describes two ways in which individuals self-regulate toward desired goals: promotion and prevention. As highly promotion-focused individuals are oriented toward growth and challenge, it was expected that they would show better adaptation to demanding work under high task control. In contrast, as highly prevention-focused individuals are oriented toward safety and responsibility they were expected to show better adaptation under low task control. Participants (N = 110) completed a measure of trait regulatory focus and then three trials of a demanding inbox activity under either low, neutral, or high task control. Heart rate variability (HRV), affective reactions (anxiety & task dissatisfaction), and task performance were measured at each trial. As predicted, highly promotion-focused individuals found high (compared to neutral) task control stress-buffering for performance. Moreover, highly prevention-focused individuals found high (compared to low) task control stress-exacerbating for dissatisfaction. In addition, highly prevention-focused individuals found low task control stress-buffering for dissatisfaction, performance, and HRV. However, these effects of low task control for highly prevention-focused individuals depended on their promotion focus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel filter Palygorskite porous ceramsite (PC) was prepared using Palygorskite clay, poreforming material sawdust, and sodium silicate with a mass ratio of 10:2:1 after sintering at 700°C for 180 min. PC was characterized with X-ray diffraction, X-ray fluorescence, scanning electron microscopy, elemental, and porosimetry. PC had a total porosity of 67% and specific surface area of 61 m2/g. In order to assess the usefulness of PC as a medium for biological aerated filters (BAF), PC and (commercially available ceramsite) CAC were used to treat wastewater city in two laboratory-scale upflow BAFs. The results showed that the reactor containing PC was more efficient than the reactor containing CAC in terms of total organic carbon (TOC), ammonia nitrogen (NH3-N), and the removal of total nitrogen (TN) and phosphorus (P). This system was found to be more efficient at water temperatures ranging from 20 to 26°C, an air–water (A/W) ratio of 3:1, dissolved oxygen concentration >4.00 mg/L, and hydraulic retention time (HRT) ranging from 0.5 to 7 h. The interconnected porous structure produced for PC was suitable for microbial growth, and primarily protozoan and metazoan organisms were found in the biofilm. Microorganism growth also showed that, under the same submerged culture conditions, the biological mass in PC was significantly higher than in CAC (34.1 and 2.2 mg TN/g, respectively). In this way, PC media can be considered suitable for the use as a medium in novel biological aerated filters for the simultaneous removal of nitrogen and phosphorus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost due to disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (i) local injection of lithium chloride; (ii) local injection of sclerostin antibody; and (iii) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties and toxicity of untreatedwastewater at Davis Station, East Antarctica,were investigated to inform decisions regarding the appropriate level of treatment for local discharge purposes and more generally, to better understand the risk associated with dispersal and impact of wastewaters in Antarctica. Suspended solids, nutrients (nitrogen, phosphorus), biological oxygen demand (BOD), metals, organic contaminants, surfactants and microbiological load were measured at various locations throughout the wastewater discharge system. Wastewater quality and properties varied greatly between buildings on station, each ofwhich has separate holding tanks. Nutrients, BOD and settleable solid levelswere higher than standard municipal wastewaters. Microbiological loads were typical of untreated wastewater. Contaminants detected in the wastewater included metals and persistent organic compounds, mainly polybrominated diphenyl ethers (PBDEs). The toxicity of wastewater was also investigated in laboratory bioassays using two local Antarctic marine invertebrates, the amphipod Paramoera walkeri and the microgastropod Skenella paludionoides. Animals were exposed to a range of wastewater concentrations from3% to 68% (test 1) or 63% (test 2) over 21 days with survival monitored daily. Significant mortality occurred in all concentrations of wastewater after 14 to 21 days, and at higher concentrations (50–68% wastewater) mortality occurred after only one day. Results indicate that the local receiving marine environment at Davis Station is at risk from existing wastewater discharges, and that advanced treatment is required both to remove contaminants shown to cause toxicity to biota, as well as to reduce the environmental risks associated with non-native micro-organisms in wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the second most common cancer worldwide and the most common cancer reported in women. This malignant tumour is characterised by a number of specific features including uncontrolled cell proliferation. It ranks fifth in the world as a cause of cancer death in women. Early diagnosis increases 5 year survival rates up to 95%. Heparan sulfate proteoglycans (HSPGs) are complex proteins composed of a core protein to which a number of highly sulfated side chains are synthesised by a highly co-ordinated process resulting in distinct sulfation patterns, which determine specific interations with cell-signaling partners including growth factors, their receptors, ligands and morphogens. The enzymes responsible for chain initiation, elongation and sulfation are critical for creating HS chain variability conferring biological functionality. This study investigated single nucleotide polymorphism in SULF1, the enzyme responsible for the 6-0 desulfation of heparan sulfate side chains. We investigated this SNP in an Australian Caucasian case-control breast cancer population and found a significant association between SULF1 and breast cancer at both the allelic and genotypic level (allele, p=0.016; genotype, p=0.032). Our results suggest the res2623047 SNP in SULF1 may impact breast cancer susceptibility. Specifically, the T allele of rs2623047 in SULF1 is associated with a increased risk of developing breast cancer in our cohort. The identification of markers including SULF1 may improve detection of this disease at its earliest stages improving patient treatment and prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exact phenotype of human periodontal ligament cells (hPDLCs) remains a controversial area. Basic fibroblast growth factor (FGF‑2) exhibits various functions and its effect on hPDLCs is also controversial. Therefore, the present study examined the effect of FGF‑2 on the growth and osteoblastic phenotype of hPDLCs with or without osteogenic inducers (dexamethasone and β‑glycerophosphate). FGF‑2 was added to defined growth culture medium and osteogenic inductive culture medium. Cell proliferation, osteogenic differentiation and mineralization were measured. The selected differentiation markers, Runx2, collagen type Ⅰ, α1 (Col1a1), osteocalcin (OCN) and epidermal growth factor receptor (EGFR), were investigated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Runx2 and OCN protein expression was measured by western blotting. FGF‑2 significantly increased the proliferation of hPDLCs, but did not affect alkaline phosphatase activity. RT‑qPCR analysis revealed enhanced mRNA expression of Runx2, OCN and EGFR, but suppressed Col1a1 gene expression in the absence of osteogenic inducers, whereas all these gene levels had no clear trend in their presence. The Runx2 protein expression was clearly increased, but the OCN protein level showed no evident trend. The mineralization assay demonstrated that FGF‑2 inhibited mineralized matrix deposition with osteogenic inducers. These results suggested that FGF‑2 induces the growth of immature hPDLCs, which is a competitive inhibitor of epithelial downgrowth, and suppresses their differentiation into mineralized tissue by affecting Runx2 expression. Therefore, this may lead to the acceleration of periodontal regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oscillations of neural activity may bind widespread cortical areas into a neural representation that encodes disparate aspects of an event. In order to test this theory we have turned to data collected from complex partial epilepsy (CPE) patients with chronically implanted depth electrodes. Data from regions critical to word and face information processing was analyzed using spectral coherence measurements. Similar analyses of intracranial EEG (iEEG) during seizure episodes display HippoCampal Formation (HCF)—NeoCortical (NC) spectral coherence patterns that are characteristic of specific seizure stages (Klopp et al. 1996). We are now building a computational memory model to examine whether spatio-temporal patterns of human iEEG spectral coherence emerge in a computer simulation of HCF cellular distribution, membrane physiology and synaptic connectivity. Once the model is reasonably scaled it will be used as a tool to explore neural parameters that are critical to memory formation and epileptogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present an update on our novel visualization technologies based on cellular immune interaction from both large-scale spatial and temporal perspectives. We do so with a primary motive: to present a visually and behaviourally realistic environment to the community of experimental biologists and physicians such that their knowledge and expertise may be more readily integrated into the model creation and calibration process. Visualization aids understanding as we rely on visual perception to make crucial decisions. For example, with our initial model, we can visualize the dynamics of an idealized lymphatic compartment, with antigen presenting cells (APC) and cytotoxic T lymphocyte (CTL) cells. The visualization technology presented here offers the researcher the ability to start, pause, zoom-in, zoom-out and navigate in 3-dimensions through an idealised lymphatic compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present invention relates generally to methods for diagnosing and treating infectious diseases and other conditions related thereto. More particularly, the present invention relates to methods for determining the presence of organisms of the Chlamydiaceae family in a subject, including species of Chlamydia, and to methods for determining the stage of an infection caused by such organisms. The present invention also relates to kits for use with the diagnostic methods. The methods and kits of the present invention are particularly useful in relation to human and non-human, i.e. veterinary subjects. The present invention further relates to methods for identifying proteins or nucleic acid sequences associated with chlamydial infection in a subject. Such proteins or nucleic acid sequences are not only useful in relation to the diagnostic methods of the invention but are also useful in the development of methods and agents for preventing and/or treating chlamydial infection in a subject, such as but not limited to, immunotherapeutic methods and agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoblast lineage cells are direct effectors of osteogenesis and are, therefore, commonly used to evaluate the in vitro osteogenic capacity of bone substitute materials. This method has served its purposes when testing novel bone biomaterials; however, inconsistent results between in vitro and in vivo studies suggest the mechanisms that govern a material's capacity to mediate osteogenesis are not well understood. The emerging field of osteoimmunology and immunomodulation has informed a paradigm shift in our view of bone biomaterials–from one of an inert to an osteoimmunomodulatory material–highlighting the importance of immune cells in materials-mediated osteogenesis. Neglecting the importance of the immune response during this process is a major shortcoming of the current evaluation protocol. In this study we evaluated a potential angiogenic bone substitute material cobalt incorporated with β-tricalcium phosphate (CCP), comparing the traditional “one cell type” approach with a “multiple cell types” approach to assess osteogenesis, the latter including the use of immune cells. We found that CCP extract by itself was sufficient to enhance osteogenic differentiation of bone marrow stem cells (BMSCs), whereas this effect was cancelled out when macrophages were involved. In response to CCP, the macrophage phenotype switched to the M1 extreme, releasing pro-inflammatory cytokines and bone catabolic factors. When the CCP materials were implanted into a rat femur condyle defect model, there was a significant increase of inflammatory markers and bone destruction, coupled with fibrous encapsulation rather than new bone formation. These findings demonstrated that the inclusion of immune cells (macrophages) in the in vitro assessment matched the in vivo tissue response, and that this method provides a more accurate indication of the essential role of immune cells when assessing materials-stimulated osteogenesis in vitro.