657 resultados para BIFURCATION
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Four cases of suggestive inflammatory aneurysms in patients with neurocysticercosis have been described. We report a case of a 49-year-old woman who presented with subarachnoid haemorrhage from a right middle cerebral artery bifurcation aneurysm and had a casual relationship with neurocysticercosis. At surgery, a viable cysticercus without signs of inflammation or thickened leptomeninges was found in the distal position of the aneurysm. Postoperatively, the patient received albendazole and dextrochlorpheniramine. In the subsequent three years, the patient was asymptomatic and took drugs to prevent convulsion and arterial hypertension. The relationship between NCC and the presence of cerebral aneurysm is discussed.
Resumo:
We investigate in this work the behaviour of the decay to the fixed points, in particular along the bifurcations, for a family of one-dimensional logistic-like discrete mappings. We start with the logistic map focusing in the transcritical bifurcation. Next we investigate the convergence to the stationary state at the cubic map. At the end we generalise the procedure for a mapping of the logistic-like type. Near the fixed point, the dynamical variable varies slowly. This property allows us to approximate/rewrite the equation of differences, hence natural from discrete mappings, into an ordinary differential equation. We then solve such equation which furnishes the evolution towards the stationary state. Our numerical simulations confirm the theoretical results validating the above mentioned approximation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
The present work investigates the nonlinear response of a half-car model. The disturbances of the road are assumed to be sinusoidal. After constructing the bifurcation diagram, we use the 0-1 test to identify chaotic motions. The main objective of this study is to eliminate chaotic behavior of the chassis and reduce its vibrations. To accomplish this, a semi-active vehicle suspension control system, using magneto-rheological dampers, is proposed. The proposed semi-active control strategy consists of two nonlinear control laws: a feedforward control, and a feedback control. They are obtained by considering the SDRE (State Dependent Riccati Equation) control, where the control parameter is the voltage applied to the coils of the magneto-rheological dampers. Numerical results show that the proposed control method is effective in significantly reducing of the chassis vibration, increasing, therefore, passenger comfort.
Resumo:
This study focuses on analysing the effects of nonlinear torsional stiffness on the dynam-ics of a slender elastic beam under torsional oscillations, which can be subject to helical buckling.The helical buckling of an elastic beam confined in a cylinder is relevant to many applications. Someexamples include oil drilling, medical cateters and even the conformation and functioning of DNAmolecules. A recent study showed that the formation of the helical configuration is a result of onlythe torsional load, confirming that there is a different path to helical buckling which is not related tothe sinusoidal buckling, stressing the importance of the geometrical behaviour of the beam. A lowdimensional model of an elastic beam under torsional oscillations is used to analyse its dynamical be-haviour with different stiffness characteristics, which are present before and after the helical buckling.Hardening and softening characteristics are present, as the effects of torsion and bending are coupled.With the use of numerical algorithms applied to nonlinear dynamics, such as bifurcation diagramsand basins of attraction, it is shown that the nonlinear stiffness can shift the bifurcations and inducechanges in the stability of the desirable and undesirable solutions. Therefore, the proper modellingof these stiffness nonlinearities seems to be important for a better understanding of the dynamicalbehaviour of such beams.
Resumo:
In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.
Resumo:
The Brazil Current (BC) originates with the arrival and bifurcation of the southernmost branch of the South Equatorial Current (sSEC) between 10-20 degrees S. Previous climatological studies showed a stratified sSEC bifurcation and that the resulting southern branch formed a shallow BC - a weak western boundary current. The analysis of three recent synoptic surveys and global model outputs challenge the description of a continuous BC. The sSEC bifurcation signal near the continental margin was unclear in the analyses, and the velocity fields were dominated by mesoscale eddies. Recurrent anticyclones that seemed to be related to the meandering BC led us to construct a picture of a flow strongly influenced by topography and probably very unstable. Given this new emerging scenario, we hypothesize that the Brazil Current is eddy-dominated to the north of 20 degrees S. Citation: Soutelino, R. G., I. C. A. da Silveira, A. Gangopadhyay, and J. A. Miranda (2011), Is the Brazil Current eddy-dominated to the north of 20 S?, Geophys. Res. Lett., 38, L03607, doi:10.1029/2010GL046276.
Resumo:
In epidemiology, the basic reproduction number R-0 is usually defined as the average number of new infections caused by a single infective individual introduced into a completely susceptible population. According to this definition. R-0 is related to the initial stage of the spreading of a contagious disease. However, from epidemiological models based on ordinary differential equations (ODE), R-0 is commonly derived from a linear stability analysis and interpreted as a bifurcation parameter: typically, when R-0 >1, the contagious disease tends to persist in the population because the endemic stationary solution is asymptotically stable: when R-0 <1, the corresponding pathogen tends to naturally disappear because the disease-free stationary solution is asymptotically stable. Here we intend to answer the following question: Do these two different approaches for calculating R-0 give the same numerical values? In other words, is the number of secondary infections caused by a unique sick individual equal to the threshold obtained from stability analysis of steady states of ODE? For finding the answer, we use a susceptibleinfective-recovered (SIR) model described in terms of ODE and also in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. The values of R-0 obtained from both approaches are compared, showing good agreement. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Herein we present results on the oscillatory dynamics in the bromate-oxalic acid-acetone-Ce(III)/Ce(IV) system in batch and also in a CSTR. We show that Ce(III) is the necessary reactant to allow the emergence of oscillations. In batch, oscillations occur with Ce(III) and also with Ce(IV), but no induction period is observed with Ce(III). In a CSTR, no oscillations were found using a freshly prepared Ce(IV), but only when the cerium-containing solution was aged, allowing partial conversion of Ce(IV) to Ce(III) by reaction with acetone. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
This work is concerned with dynamical systems in presence of symmetries and reversing symmetries. We describe a construction process of subspaces that are invariant by linear Gamma-reversible-equivariant mappings, where Gamma is the compact Lie group of all the symmetries and reversing symmetries of such systems. These subspaces are the sigma-isotypic components, first introduced by Lamb and Roberts in (1999) [10] and that correspond to the isotypic components for purely equivariant systems. In addition, by representation theory methods derived from the topological structure of the group Gamma, two algebraic formulae are established for the computation of the sigma-index of a closed subgroup of Gamma. The results obtained here are to be applied to general reversible-equivariant systems, but are of particular interest for the more subtle of the two possible cases, namely the non-self-dual case. Some examples are presented. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
The use of antiretroviral therapy has proven to be remarkably effective in controlling the progression of human immunodeficiency virus (HIV) infection and prolonging patient's survival. Therapy however may fail and therefore these benefits can be compromised by the emergence of HIV strains that are resistant to the therapy. In view of these facts, the question of finding the reason for which drug-resistant strains emerge during therapy has become a worldwide problem of great interest. This paper presents a deterministic HIV-1 model to examine the mechanisms underlying the emergence of drug-resistance during therapy. The aim of this study is to determine whether, and how fast, antiretroviral therapy may determine the emergence of drug resistance by calculating the basic reproductive numbers. The existence, feasibility and local stability of the equilibriums are also analyzed. By performing numerical simulations we show that Hopf bifurcation may occur. The model suggests that the individuals with drug-resistant infection may play an important role in the epidemic of HIV. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Phenomena as reconnection scenarios, periodic-orbit collisions, and primary shearless tori have been recognized as features of nontwist maps. Recently, these phenomena and secondary shearless tori were analytically predicted for generic maps in the neighborhood of the tripling bifurcation of an elliptic fixed point. In this paper, we apply a numerical procedure to find internal rotation number profiles that highlight the creation of periodic orbits within islands of stability by a saddle-center bifurcation that emerges out a secondary shearless torus. In addition to the analytical predictions, our numerical procedure applied to the twist and nontwist standard maps reveals that the atypical secondary shearless torus occurs not only near a tripling bifurcation of the fixed point but also near a quadrupling bifurcation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4750040]