984 resultados para BH3 Interacting Domain Death Agonist Protein
Resumo:
One of the hallmarks of Alzheimer disease is the pathological aggregation of tau protein into paired helical filaments (PHFs) and neurofibrillary tangles. Here we describe the in vitro assembly of recombinant tau protein and constructs derived from it into PHFs. Though whole tau assembled poorly, constructs containing three internal repeats (corresponding to the fetal tau isoform) formed PHFs reproducibly. This ability depended on intermolecular disulfide bridges formed by the single Cys-322. Blocking the SH group, mutating Cys for Ala, or keeping tau in a reducing environment all inhibited assembly. With constructs derived from four-repeat tau (having the additional repeat no. 2 and a second Cys-291), PHF assembly was blocked because Cys-291 and Cys-322 interact within the molecule. PHF assembly was enabled again by mutating Cys-291 for Ala. The synthetic PHFs bound the dye thioflavin S used in Alzheimer disease diagnostics. The data imply that the redox potential in the neuron is crucial for PHF assembly, independently or in addition to pathological phosphorylation reactions.
Resumo:
The WW domain has previously been described as a motif of 38 semiconserved residues found in seemingly unrelated proteins, such as dystrophin, Yes-associated protein (YAP), and two transcriptional regulators, Rsp-5 and FE65. The molecular function of the WW domain has been unknown until this time. Using a functional screen of a cDNA expression library, we have identified two putative ligands of the WW domain of YAP, which we named WBP-1 and WBP-2. Peptide sequence comparison between the two partial clones revealed a homologous region consisting of a proline-rich domain followed by a tyrosine residue (with the shared sequence PPPPY), which we shall call the PY motif. Binding assays and site-specific mutagenesis have shown that the PY motif binds with relatively high affinity and specificity to the WW domain of YAP, with the preliminary consensus XPPXY being critical for binding. Herein, we have implicated the WW domain with a role in mediating protein-protein interactions, as a variant of the paradigm set by Src homology 3 domains and their proline-rich ligands.
Resumo:
Chronic myelogenous leukemia evolves in two clinically distinct stages: a chronic and a blast crisis phase. The molecular changes associated with chronic phase to blast crisis transition are largely unknown. We have identified a cDNA clone, DR-nm23, differentially expressed in a blast-crisis cDNA library, which has approximately 70% sequence similarity to the putative metastatic suppressor genes, nm23-H1 and nm23-H2. The deduced amino acid sequence similarity to the proteins encoded by these two latter genes is approximately 65% and includes domains and amino acid residues (the leucine zipper-like and the RGD domain, a serine and a histidine residue in the NH2- and in the COOH-terminal portion of the protein, respectively) postulated to be important for nm23 function. DR-nm23 mRNA is preferentially expressed at early stages of myeloid differentiation of highly purified CD34+ cells. Its constitutive expression in the myeloid precursor 32Dc13 cell line, which is growth-factor dependent for both proliferation and differentiation, results in inhibition of granulocytic differentiation induced by granulocyte colony-stimulating factor and causes apoptotic cell death. These results are consistent with a role for DR-nm23 in normal hematopoiesis and raise the possibility that its overexpression contributes to differentiation arrest, a feature of blastic transformation in chronic myelogenous leukemia.
Resumo:
In addition to their well-recognized hepatotropism, all hepatitis B viruses (HBVs) display marked species specificity, growing poorly or not at all in species other than those closely related to their natural hosts. We have examined the molecular basis for this narrow host range, using duck HBV (DHBV) and heron HBV (HHBV) as a model system. HHBV virions will not infect ducks in vivo and infect cultured duck hepatocytes extremely inefficiently in vitro. Mutant HHBV genomes lacking all viral envelope proteins (HHBV env-) can be complemented in trans with DHBV envelope proteins; the resulting pseudotyped virions can efficiently infect duck hepatocytes. Further complementation analysis reveals that of the two viral surface proteins (L and S), it is the L protein that determines host range. Pseudotyping of HHBV env- with DHBV/HHBV chimeric envelope proteins reveals that replacement of as few as 69 amino acids of the pre-S domain of the HHBV L protein by their DHBV counterparts is sufficient to permit infection of duck hepatocytes. These studies indicate that the species-specificity of hepadnaviral infection is determined at the level of virus entry and is governed by the pre-S domain of the viral L protein.
Resumo:
We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044.
Resumo:
The murine p53 protein contains two nucleic acid-binding sites, a sequence-specific DNA-binding region localized between amino acid residues 102-290 and a nucleic acid-binding site without sequence specificity that has been localized to residues 364-390. Alternative splicing of mRNA generates two forms of this p53 protein. The normal, or majority, splice form (NSp53) retains its carboxyl-terminal sequence-nonspecific nucleic acid-binding site, which can negatively regulate the sequence-specific DNA-binding site. The alternative splice form of p53 (ASp53) replaces amino acid residues 364-390 with 17 different amino acids. This protein fails to bind nucleic acids nonspecifically and is constitutive for sequence-specific DNA binding. Thus, the binding of nucleic acids at the carboxyl terminus regulates sequence-specific DNA binding by p53. The implications of these findings for the activation of p53 transcriptional activity following DNA damage are discussed.
Resumo:
Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca2+ and Ca2+/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca(2+)-binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca(2+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca2+/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca(2+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approximately 56 kDa) binds calmodulin in a Ca(2+)-dependent manner. Furthermore, 45Ca-binding assays revealed that CCaMK directly binds Ca2+. The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca2+ signaling in plants.
Resumo:
Complexed with its intracellular receptor, FKBP12, the natural product rapamycin inhibits G1 progression of the cell cycle in a variety of mammalian cell lines and in the yeast Saccharomyces cerevisae. Previously, a mammalian protein that directly associates with FKBP12-rapamycin has been identified and its encoding gene has been cloned from both human (designated FRAP) [Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S. & Schreiber, S.L. (1994) Nature (London) 369, 756-758] and rat (designated RAFT) [Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. (1994) Cell 78, 35-43]. The full-length FRAP is a 289-kDa protein containing a putative phosphatidylinositol kinase domain. Using an in vitro transcription/translation assay method coupled with proteolysis studies, we have identified an 11-kDa FKBP12-rapamycin-binding domain within FRAP. This minimal binding domain lies N-terminal to the kinase domain and spans residues 2025-2114. In addition, we have carried out mutagenesis studies to investigate the role of Ser2035, a potential phosphorylation site for protein kinase C within this domain. We now show that the FRAP Ser2035-->Ala mutant displays similar binding affinity when compared with the wild-type protein, whereas all other mutations at this site, including mimics of phosphoserine, abolish binding, presumably due to either unfavorable steric interactions or induced conformational changes.
Resumo:
The p53 protein activates transcription of a target gene by binding to a specific DNA response element and interacting with the transcriptional apparatus of RNA polymerase II. The amino-terminal domain of p53 interacts with a component of the TFIID basal transcription complex. The human TATA-binding-protein-associated factor TAFII31, a component of TFIID, has been identified as a critical protein required for p53-mediated transcriptional activation. TAFII31 and p53 proteins bind to each other via amino acid residues in the amino-terminal domain of p53 that are essential for transcription. Antibodies directed against TAFII31 protein inhibit p53-activated but not basal transcription in vitro. These results demonstrate that TAFII31 is a coactivator for the p53 protein.
Resumo:
vpr is one of the auxiliary genes of human immunodeficiency virus type 1 (HIV-1) and is conserved in the related HIV-2/simian immunodeficiency virus lentiviruses. The unique feature of Vpr is that it is the only nonstructural protein incorporated into the virus particle. Secondary structural analysis predicted an amphipathic alpha-helical domain in the amino terminus of Vpr (residues 17-34) which contains five acidic and four leucine residues. To evaluate the role of specific residues of the helical domain for virion incorporation, mutagenesis of this domain was carried out. Substitution of proline for any of the individual acidic residues (Asp-17 and Glu-21, -24, -25, and -29) eliminated the virion incorporation of Vpr and also altered the stability of Vpr in cells. Conservative replacement of glutamic residues of the helical domain with aspartic residues resulted in Vpr characteristic of wild type both in stability and virion incorporation, as did substitution of glutamine for the acidic residues. In contrast, replacement of leucine residues of the helical domain (residues 20, 22, 23, and 26) by alanine eliminated virion incorporation function of Vpr. These data indicate that acidic and hydrophobic residues and the helical structure in this region are critical for the stability of Vpr and its efficient incorporation into virus-like particles.
Resumo:
The X gene product encoded by the hepatitis B virus, termed pX, is a promiscuous transactivator of a variety of viral and cellular genes under the control of diverse cis-acting elements. Although pX does not appear to directly bind DNA, pX-responsive elements include the NF-kappa B, AP-1, and CRE (cAMP response element) sites. Direct protein-protein interactions occur between viral pX and the CRE-binding transcription factors CREB and ATF. Here we examine the mechanism of the protein-protein interactions occurring between CREB and pX by using recombinant proteins and in vitro DNA-binding assays. We demonstrate that pX interacts with the basic region-leucine zipper domain of CREB but not with the DNA-binding domain of the yeast transactivator protein Gal4. The interaction between CREB and pX increases the affinity of CREB for the CRE site by an order of magnitude, although pX does not alter the rate of CREB dimerization. Methylation interference footprinting reveals differences between the CREB DNA and CREB-pX DNA complexes. These experiments demonstrate that pX titers the way CREB interacts with the CRE DNA and suggest that the basic, DNA-binding region of CREB is the target of pX. Transfection assays in PC12 cells with the CREB-dependent somatostatin promoter demonstrate a nearly 15-fold transcriptional induction after forskolin stimulation in the presence of pX. These results support the significance of the CREB-pX protein-protein interactions in vivo.
Resumo:
Stathmin is a ubiquitous, cytosolic 19-kDa protein, which is phosphorylated on up to four sites in response to many regulatory signals within cells. Its molecular characterization indicates a functional organization including an N-terminal regulatory domain that bears the phosphorylation sites, linked to a putative alpha-helical binding domain predicted to participate in coiled-coil, protein-protein interactions. We therefore proposed that stathmin may play the role of a relay integrating diverse intracellular regulatory pathways; its action on various target proteins would be a function of its combined phosphorylation state. To search for such target proteins, we used the two-hybrid screen in yeast, with stathmin as a "bait." We isolated and characterized four cDNAs encoding protein domains that interact with stathmin in vivo. One of the corresponding proteins was identified as BiP, a member of the hsp70 heat-shock protein family. Another is a previously unidentified, putative serine/threonine kinase, KIS, which might be regulated by stathmin or, more likely, be part of the kinases controlling its phosphorylation state. Finally, two clones code for subdomains of two proteins, CC1 and CC2, predicted to form alpha-helices participating in coiled-coil interacting structures. Their isolation by interaction screening further supports our model for the regulatory function of stathmin through coiled-coil interactions with diverse downstream targets via its presumed alpha-helical binding domain. The molecular and biological characterization of KIS, CC1, and CC2 proteins will give further insights into the molecular functions and mechanisms of action of stathmin as a relay of integrated intracellular regulatory pathways.
Resumo:
The influence of a synthetic retroviral peptide, CKS-17, on T helper type 1 (Th1)- or Th2-related cytokines was investigated in human blood mononuclear cells. Cells were stimulated with staphylococcal enterotoxin A, anti-CD3 plus anti-CD28 monoclonal antibodies, or lipopolysaccharide to induce cytokine mRNA. mRNA was detected by a reverse transcription-polymerase chain reaction or Northern blot analysis. CKS-17 down-regulated stimulant-induced mRNA accumulation for interferon gamma (IFN-gamma), interleukin (IL)-2, and p40 heavy and p35 light chains of IL-12, a cytokine that mediates development of Th1 response. CKS-17 up-regulated stimulant-induced mRNA accumulation of IL-10 and did not suppress Th2-related cytokine (IL-4, IL-5, IL-6, or IL-13) mRNA expression. A reverse sequence of CKS-17 peptide, used as a control, showed no such action. Anti-human IL-10 monoclonal antibody blocked ability of CKS-17 to inhibit mRNA accumulation for IFN-gamma but not the CKS-17 suppressive activity of IL-12 p40 heavy chain mRNA. Thus, CKS-17-mediated suppression of IFN-gamma mRNA expression is dependent upon augmentation of IL-10 production by CKS-17. This conserved component of several retroviral envelope proteins, CKS-17, may act as an immunomodulatory epitope responsible for cytokine dysregulation that leads to suppression of cellular immunity.
Resumo:
PAWP, a candidate sperm-borne oocyte activating factor, induces oocyte activation and acts upstream of the calcium signalling pathway, however, PAWP’s downstream signalling pathway in oocyte cytoplasm remains to be uncovered. Data from our lab suggested that the interacting partner of PAWP, at least in the frog (Xenopus laevis) model may be YAP, a highly expressed protein in amphibian and mammalian oocytes. Therefore, the objectives of this study were to confirm that PAWP’s predominant binding partner in Xenopus laevis oocyte is YAP; to determine if mammalian oocyte activation is also dependent on PAWP-YAP interaction; and to verify that the PAWP-YAP interaction during oocyte activation is dependent on the WWI domain module. By immunohistochemistry, YAP was localized predominantly in the cytosol of metaphase II-arrested Xenopus laevis oocytes, where presumably the PAWP-YAP interaction occurs. Utilizing Far Western blotting, YAP was identified as the predominant binding partner of PAWP, in metaphase II-arrested frog (Xenopus laevis), swine (Sus scrofa) and mouse (mus musculus) oocytes. The specificity of this interaction was then tested on Far Western blotting of mouse ovarian and oocyte cytosolic extracts, by competition with both wild-type and point-mutated recombinant WWI domains derived from YAP. The removal of GST from the wild-type WWI-GST fusion protein was a requirement for effective blockage of WWI module interaction between PAWP and YAP. As expected, the mutated WWI domain was ineffective in inhibiting the PAWP-YAP interaction. To conclude, this study identified YAP as the predominant binding partner of PAWP in both amphibian and mammalian oocytes, and showed this interaction is dependent on the WWI modular interaction. The results allow us to test the functional relevance of this WWI modular interaction during oocyte activation in vivo, in the future.
Resumo:
N4WBP5A (Ndfip2) belongs to an evolutionarily conserved group of Nedd4-interacting proteins with two homologues in mammalian species. We have previously shown that N4WBP5A expression in Xenopus oocytes results in increased cell-surface expression of the epithelial sodium channel. N4WBPs are characterized by one or two amino terminal PPxY motifs and three transmembrane domains. Here we show that both PPxY motifs of N4WBP5A mediate interaction with WW domains of Nedd4 and that N4WBP5A can physically interact with the WW domains of several Nedd4-family proteins. N4WBP5A is ubiquitinated and ubiquitination does not significantly affect the turnover of N4WBP5A protein. Ubiquitination of N4WBP5A is enhanced by Nedd4 and Nedd4-2 expression. N4WBP5A localizes to the Golgi, vesicles associated with the Golgi complex and to multivesicular bodies. We show that the ectopic expression of N4WBP5A inhibits receptor-mediated endocytosis of labelled epidermal growth factor. N4WBP5A overexpression inhibits accumulation of EGF in large endocytic/lysosomal vesicles suggestive of a role for N4WBP5A in protein trafficking. We propose that N4WBP5A acts as an adaptor to recruit Nedd4 family ubiquitin-protein ligases to the protein trafficking machinery.