985 resultados para Automatic selection
Resumo:
The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.
Resumo:
We derive the computational cutoff rate, R-o, for coherent trellis-coded modulation (TCM) schemes on independent indentically distributed (i.i.d.) Rayleigh fading channels with (K, L) generalized selection combining (GSC) diversity, which combines the K paths with the largest instantaneous signal-to-noise ratios (SNRs) among the L available diversity paths. The cutoff rate is shown to be a simple function of the moment generating function (MGF) of the SNR at the output of the (K, L) GSC receiver. We also derive the union bound on the bit error probability of TCM schemes with (K, L) GSC in the form of a simple, finite integral. The effectiveness of this bound is verified through simulations.
Resumo:
The paper describes a modular, unit selection based TTS framework, which can be used as a research bed for developing TTS in any new language, as well as studying the effect of changing any parameter during synthesis. Using this framework, TTS has been developed for Tamil. Synthesis database consists of 1027 phonetically rich prerecorded sentences. This framework has already been tested for Kannada. Our TTS synthesizes intelligible and acceptably natural speech, as supported by high mean opinion scores. The framework is further optimized to suit embedded applications like mobiles and PDAs. We compressed the synthesis speech database with standard speech compression algorithms used in commercial GSM phones and evaluated the quality of the resultant synthesized sentences. Even with a highly compressed database, the synthesized output is perceptually close to that with uncompressed database. Through experiments, we explored the ambiguities in human perception when listening to Tamil phones and syllables uttered in isolation,thus proposing to exploit the misperception to substitute for missing phone contexts in the database. Listening experiments have been conducted on sentences synthesized by deliberately replacing phones with their confused ones.
Resumo:
In many wireless applications, it is highly desirable to have a fast mechanism to resolve or select the packet from the user with the highest priority. Furthermore, individual priorities are often known only locally at the users. In this paper we introduce an extremely fast, local-information-based multiple access algorithm that selects the best node in 1.8 to 2.1 slots,which is much lower than the 2.43 slot average achieved by the best algorithm known to date. The algorithm, which we call Variable Power Multiple Access Selection (VP-MAS), uses the local channel state information from the accessing nodes to the receiver, and maps the priorities into the receive power.It is inherently distributed and scales well with the number of users. We show that mapping onto a discrete set of receive power levels is optimal, and provide a complete characterization for it. The power levels are chosen to exploit packet capture that inherently occurs in a wireless physical layer. The VP-MAS algorithm adjusts the expected number of users that contend in each step and their respective transmission powers, depending on whether previous transmission attempts resulted in capture,idle channel, or collision.
Resumo:
The IEEE 802.16/WiMAX standard has fully embraced multi-antenna technology and can, thus, deliver robust and high transmission rates and higher system capacity. Nevertheless,due to its inherent form-factor constraints and cost concerns, a WiMAX mobile station (MS) should preferably contain fewer radio frequency (RF) chains than antenna elements.This is because RF chains are often substantially more expensive than antenna elements. Thus, antenna selection, wherein a subset of antennas is dynamically selected to connect to the limited RF chains for transceiving, is a highly appealing performance enhancement technique for multi-antenna WiMAX terminals.In this paper, a novel antenna selection protocol tailored for next-generation IEEE 802.16 mobile stations is proposed. As demonstrated by the extensive OPNET simulations, the proposed protocol delivers a significant performance improvement over conventional 802.16 terminals that lack the antenna selection capability. Moreover, the new protocol leverages the existing signaling methods defined in 802.16, thereby incurring a negligible signaling overhead and requiring only diminutive modifications of the standard. To the best of our knowledge, this paper represents the first effort to support antenna selection capability in IEEE 802.16 mobile stations.
Resumo:
Sugars perform two vital functions in plants: as compatible solutes protecting the cell against osmotic stress and as mobile source of immediate and long-term energy requirement for growth and development. The two sugars that occur commonly in nature are sucrose and trehalose. Sucrose comprises one glucose and one fructose molecule; trehalose comprises two glucose molecules. Trehalose occurs in significant amounts in insects and fungi which greatly outnumber the plants. Surprisingly, in plants trehalose has been found in barely detectable amounts, if at all, raising the question `why did nature select sucrose instead of trehalose as the mobile energy source and as storage sugar for the plants'? Modelling revealed that when attached to the ribbon-shaped beta-1,4 glucan a trehalose molecule is shaped like a hook. This suggests that the beta-1,4 glucan chains with attached trehalose will fail to align to form inter-chain hydrogen bonds and coalesce into a cellulose microfibril, as a result of which in trehalose-accumulating plant cells, the cell wall will tend to become leaky. Thus in plants an evolutionary selection was made in favour of sucrose as the mobile energy source. Genetic engineering of plant cells for combating abiotic stresses through microbial trehalose-producing genes is fraught with risk of damage to plant cell walls.
Resumo:
MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.
Resumo:
Feature selection is an important first step in regional hydrologic studies (RHYS). Over the past few decades, advances in data collection facilities have resulted in development of data archives on a variety of hydro-meteorological variables that may be used as features in RHYS. Currently there are no established procedures for selecting features from such archives. Therefore, hydrologists often use subjective methods to arrive at a set of features. This may lead to misleading results. To alleviate this problem, a probabilistic clustering method for regionalization is presented to determine appropriate features from the available dataset. The effectiveness of the method is demonstrated by application to regionalization of watersheds in conterminous United States for low flow frequency analysis. Plausible homogeneous regions that are formed by using the proposed clustering method are compared with those from conventional methods of regionalization using L-moment based homogeneity tests. Results show that the proposed methodology is promising for RHYS.