924 resultados para Automatic Analysis of Multivariate Categorical Data Sets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ASTER Global Digital Elevation Model (GDEM) has made elevation data at 30 m spatial resolution freely available, enabling reinvestigation of morphometric relationships derived from limited field data using much larger sample sizes. These data are used to analyse a range of morphometric relationships derived for dunes (between dune height, spacing, and equivalent sand thickness) in the Namib Sand Sea, which was chosen because there are a number of extant studies that could be used for comparison with the results. The relative accuracy of GDEM for capturing dune height and shape was tested against multiple individual ASTER DEM scenes and against field surveys, highlighting the smoothing of the dune crest and resultant underestimation of dune height, and the omission of the smallest dunes, because of the 30 m sampling of ASTER DEM products. It is demonstrated that morphometric relationships derived from GDEM data are broadly comparable with relationships derived by previous methods, across a range of different dune types. The data confirm patterns of dune height, spacing and equivalent sand thickness mapped previously in the Namib Sand Sea, but add new detail to these patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time-course of metabolic events following response to a model hepatotoxin ethionine (800 mg/kg) was investigated over a 7 day period in rats using high-resolution (1)H NMR spectroscopic analysis of urine and multivariate statistics. Complementary information was obtained by multivariate analysis of (1)H MAS NMR spectra of intact liver and by conventional histopathology and clinical chemistry of blood plasma. (1)H MAS NMR spectra of liver showed toxin-induced lipidosis 24 h postdose consistent with the steatosis observed by histopathology, while hypertaurinuria was suggestive of liver injury. Early biochemical changes in urine included elevation of guanidinoacetate, suggesting impaired methylation reactions. Urinary increases in 5-oxoproline and glycine suggested disruption of the gamma-glutamyl cycle. Signs of ATP depletion together with impairment of the energy metabolism were given from the decreased levels in tricarboxylic acid cycle intermediates, the appearance of ketone bodies in urine, the depletion of hepatic glucose and glycogen, and also hypoglycemia. The observed increase in nicotinuric acid in urine could be an indication of an increase in NAD catabolism, a possible consequence of ATP depletion. Effects on the gut microbiota were suggested by the observed urinary reductions in the microbial metabolites 3-/4-hydroxyphenyl propionic acid, dimethylamine, and tryptamine. At later stages of toxicity, there was evidence of kidney damage, as indicated by the tubular damage observed by histopathology, supported by increased urinary excretion of lactic acid, amino acids, and glucose. These studies have given new insights into mechanisms of ethionine-induced toxicity and show the value of multisystem level data integration in the understanding of experimental models of toxicity or disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines two hydrochemical time-series derived from stream samples taken in the Upper Hafren catchment, Plynlimon, Wales. One time-series comprises data collected at 7-hour intervals over 22 months (Neal et al., submitted, this issue), while the other is based on weekly sampling over 20 years. A subset of determinands: aluminium, calcium, chloride, conductivity, dissolved organic carbon, iron, nitrate, pH, silicon and sulphate are examined within a framework of non-stationary time-series analysis to identify determinand trends, seasonality and short-term dynamics. The results demonstrate that both long-term and high-frequency monitoring provide valuable and unique insights into the hydrochemistry of a catchment. The long-term data allowed analysis of long-termtrends, demonstrating continued increases in DOC concentrations accompanied by declining SO4 concentrations within the stream, and provided new insights into the changing amplitude and phase of the seasonality of the determinands such as DOC and Al. Additionally, these data proved invaluable for placing the short-term variability demonstrated within the high-frequency data within context. The 7-hour data highlighted complex diurnal cycles for NO3, Ca and Fe with cycles displaying changes in phase and amplitude on a seasonal basis. The high-frequency data also demonstrated the need to consider the impact that the time of sample collection can have on the summary statistics of the data and also that sampling during the hours of darkness provides additional hydrochemical information for determinands which exhibit pronounced diurnal variability. Moving forward, this research demonstrates the need for both long-term and high-frequency monitoring to facilitate a full and accurate understanding of catchment hydrochemical dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic Network transactions specifies that datagram from source to destination is routed through numerous routers and paths depending on the available free and uncongested paths which results in the transmission route being too long, thus incurring greater delay, jitter, congestion and reduced throughput. One of the major problems of packet switched networks is the cell delay variation or jitter. This cell delay variation is due to the queuing delay depending on the applied loading conditions. The effect of delay, jitter accumulation due to the number of nodes along transmission routes and dropped packets adds further complexity to multimedia traffic because there is no guarantee that each traffic stream will be delivered according to its own jitter constraints therefore there is the need to analyze the effects of jitter. IP routers enable a single path for the transmission of all packets. On the other hand, Multi-Protocol Label Switching (MPLS) allows separation of packet forwarding and routing characteristics to enable packets to use the appropriate routes and also optimize and control the behavior of transmission paths. Thus correcting some of the shortfalls associated with IP routing. Therefore MPLS has been utilized in the analysis for effective transmission through the various networks. This paper analyzes the effect of delay, congestion, interference, jitter and packet loss in the transmission of signals from source to destination. In effect the impact of link failures, repair paths in the various physical topologies namely bus, star, mesh and hybrid topologies are all analyzed based on standard network conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Microarray based comparative genomic hybridisation (CGH) experiments have been used to study numerous biological problems including understanding genome plasticity in pathogenic bacteria. Typically such experiments produce large data sets that are difficult for biologists to handle. Although there are some programmes available for interpretation of bacterial transcriptomics data and CGH microarray data for looking at genetic stability in oncogenes, there are none specifically to understand the mosaic nature of bacterial genomes. Consequently a bottle neck still persists in accurate processing and mathematical analysis of these data. To address this shortfall we have produced a simple and robust CGH microarray data analysis process that may be automated in the future to understand bacterial genomic diversity. Results: The process involves five steps: cleaning, normalisation, estimating gene presence and absence or divergence, validation, and analysis of data from test against three reference strains simultaneously. Each stage of the process is described and we have compared a number of methods available for characterising bacterial genomic diversity, for calculating the cut-off between gene presence and absence or divergence, and shown that a simple dynamic approach using a kernel density estimator performed better than both established, as well as a more sophisticated mixture modelling technique. We have also shown that current methods commonly used for CGH microarray analysis in tumour and cancer cell lines are not appropriate for analysing our data. Conclusion: After carrying out the analysis and validation for three sequenced Escherichia coli strains, CGH microarray data from 19 E. coli O157 pathogenic test strains were used to demonstrate the benefits of applying this simple and robust process to CGH microarray studies using bacterial genomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of physiological parameters (canopy light transmission, canopy shape, leaf size, flowering and flushing intensity) were measured from the International Clone Trial, typically over the course of two years. Data were collected from six locations, these being: Brazil, Ecuador, Trinidad, Venezuela, Côte d’Ivoire and Ghana. Canopy shape varied significantly between clones, although it showed little variation between locations. Genotypic variation in leaf size was differentially affected by the growth location; such differences appeared to underlie a genotype by environment interaction in relation to canopy light transmission. Flushing data were recorded at monthly intervals over the course of a year. Within each location, a significant interaction was observed between genotype and time of year, suggesting that some genotypes respond to a greater extent than others to environmental stimuli. A similar interaction was observed for flowering data, where significant correlations were found between flowering intensity and temperature in Brazil and flowering intensity and rainfall in Côte d’Ivoire. The results demonstrate the need for local evaluation of cocoa clones and also suggest that the management practices for particular planting material may need to be fine-tuned to the location in which they are cultivated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values. Methods We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature. Results Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr−1 for Fagus sylvatica and 0.88 yr−1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr−1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula. Conclusions We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-bred cow adoption is an important and potent policy variable precipitating subsistence household entry into emerging milk markets. This paper focuses on the problem of designing policies that encourage and sustain milkmarket expansion among a sample of subsistence households in the Ethiopian highlands. In this context it is desirable to measure households’ ‘proximity’ to market in terms of the level of deficiency of essential inputs. This problem is compounded by four factors. One is the existence of cross-bred cow numbers (count data) as an important, endogenous decision by the household; second is the lack of a multivariate generalization of the Poisson regression model; third is the censored nature of the milk sales data (sales from non-participating households are, essentially, censored at zero); and fourth is an important simultaneity that exists between the decision to adopt a cross-bred cow, the decision about how much milk to produce, the decision about how much milk to consume and the decision to market that milk which is produced but not consumed internally by the household. Routine application of Gibbs sampling and data augmentation overcome these problems in a relatively straightforward manner. We model the count data from two sites close to Addis Ababa in a latent, categorical-variable setting with known bin boundaries. The single-equation model is then extended to a multivariate system that accommodates the covariance between crossbred-cow adoption, milk-output, and milk-sales equations. The latent-variable procedure proves tractable in extension to the multivariate setting and provides important information for policy formation in emerging-market settings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(ABR) is of fundamental importance to the investiga- tion of the auditory system behavior, though its in- terpretation has a subjective nature because of the manual process employed in its study and the clinical experience required for its analysis. When analyzing the ABR, clinicians are often interested in the identi- fication of ABR signal components referred to as Jewett waves. In particular, the detection and study of the time when these waves occur (i.e., the wave la- tency) is a practical tool for the diagnosis of disorders affecting the auditory system. In this context, the aim of this research is to compare ABR manual/visual analysis provided by different examiners. Methods: The ABR data were collected from 10 normal-hearing subjects (5 men and 5 women, from 20 to 52 years). A total of 160 data samples were analyzed and a pair- wise comparison between four distinct examiners was executed. We carried out a statistical study aiming to identify significant differences between assessments provided by the examiners. For this, we used Linear Regression in conjunction with Bootstrap, as a me- thod for evaluating the relation between the responses given by the examiners. Results: The analysis sug- gests agreement among examiners however reveals differences between assessments of the variability of the waves. We quantified the magnitude of the ob- tained wave latency differences and 18% of the inves- tigated waves presented substantial differences (large and moderate) and of these 3.79% were considered not acceptable for the clinical practice. Conclusions: Our results characterize the variability of the manual analysis of ABR data and the necessity of establishing unified standards and protocols for the analysis of these data. These results may also contribute to the validation and development of automatic systems that are employed in the early diagnosis of hearing loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing use of social media, applications or platforms that allow users to interact online, ensures that this environment will provide a useful source of evidence for the forensics examiner. Current tools for the examination of digital evidence find this data problematic as they are not designed for the collection and analysis of online data. Therefore, this paper presents a framework for the forensic analysis of user interaction with social media. In particular, it presents an inter-disciplinary approach for the quantitative analysis of user engagement to identify relational and temporal dimensions of evidence relevant to an investigation. This framework enables the analysis of large data sets from which a (much smaller) group of individuals of interest can be identified. In this way, it may be used to support the identification of individuals who might be ‘instigators’ of a criminal event orchestrated via social media, or a means of potentially identifying those who might be involved in the ‘peaks’ of activity. In order to demonstrate the applicability of the framework, this paper applies it to a case study of actors posting to a social media Web site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient c was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and c. For single-peak waveforms the scatterplot of c versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return c values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the c versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient c of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.