967 resultados para Atomic coherence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planar 13.56MHz RF-excited low temperature atmospheric pressure plasma jet (APPJ) investigated in this study is operated with helium feed gas and a small molecular oxygen admixture. The effluent leaving the discharge through the jet’s nozzle contains very few charged particles and a high reactive oxygen species’ density. As its main reactive radical, essential for numerous applications, the ground state atomic oxygen density in the APPJ’s effluent is measured spatially resolved with two-photon absorption laser induced fluorescence spectroscopy. The atomic oxygen density at the nozzle reaches a value of ~1016 cm-3. Even at several centimetres distance still 1% of this initial atomic oxygen density can be detected. Optical emission spectroscopy (OES) reveals the presence of short living excited oxygen atoms up to 10 cm distance from the jet’s nozzle. The measured high ground state atomic oxygen density and the unaccounted for presence of excited atomic oxygen require further investigations on a possible energy transfer from the APPJ’s discharge region into the effluent: energetic vacuum ultraviolet radiation, measured by OES down to 110 nm, reaches far into the effluent where it is presumed to be responsible for the generation of atomic oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an ab initio nonperturbative time-dependent R-matrix theory for ultrafast atomic processes. This theory enables investigations of the interaction of few-femtosecond and -attosecond pulse lasers with complex multielectron atoms and atomic ions. A derivation and analysis of the basic equations are given, which propagate the atomic wave function in the presence of the laser field forward in time in the internal and external R-matrix regions. To verify the accuracy of the approach, we investigate two-photon ionization of Ne irradiated by an intense laser pulse and compare current results with those obtained using the R-matrix Floquet method and an alternative time-dependent method. We also verify the capability of the current approach by applying it to the study of two-dimensional momentum distributions of electrons ejected from Ne due to irradiation by a sequence of 2 as light pulses in the presence of a 780 nm laser field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate numerically the existence of a spin-motive force acting on spin carriers when moving in a time and space dependent internal ?eld. This is the case for electrons in a one-dimensional wire with a precessing domain wall. The effect can be explained solely by adiabatic dynamics and is shown to exist for both classical and quantum systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute atomic oxygen ground state densities in a radio-frequency driven atmospheric pressure plasma jet, operated in a helium-oxygen mixture, are determined using diagnostic based modeling. One-dimensional numerical simulations of the electron dynamics are combined with time integrated optical emission spectroscopy. The population dynamics of the upper O 3p 3P (l=844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through comparison with the upper Ar 2p1 (l=750.4 nm) state. Results for spatial profiles and power variations are presented and show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.

Relevância:

20.00% 20.00%

Publicador: