952 resultados para Atomic bomb victims
Resumo:
Two techniques are described to calculate energy densities for the bell, gonad and oral arm tissues of three scyphozoan jellyfish (Cyanea capillata, Rhizostoma octopus and Chrysaora hysoscella). First, bomb-calorimetry was used, a technique that is readily available and inexpensive. However, the reliability of this technique for gelatinous material is contentious. Second, further analysis involving the more labour intensive proximate-composition analysis (protein, fat and carbohydrate) was carried out on two species (C capillata and R. octopus). These proximate data were subsequently converted to energy densities. The two techniques (bomb-calorimetry and proximate-composition) gave very similar estimates of energy density. Differences in energy density were found both amongst different species and between different tissues of the same species. Mean ( +/- S.D.) energy density estimates for whole animals from bomb-calorimetry were 0.18 +/- 0.05, 0.11 +/- 0.04, and 0.10 +/- 0.03 kJ g wet mass(-1) for C. capillata, R. octopus, and C. hysoscella respectively. The implications of these low energy densities for species feeding on jellyfish are discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.
Resumo:
When highly charged ions are incident on a surface, part of their potential energy is emitted as characteristic radiation. The energies and yields of these characteristic x rays have been measured for a series of elements at the Tokyo electron-beam ion trap. These data have been used to develop a simple model of the relaxation of the hollow atoms which are formed as the ion approaches the surface, as well as a set of semiempirical scaling laws, which allow for the ready calculation of the K-shell x-ray spectrum which would be produced by an arbitrary slow bare or hydrogenlike ion on a surface. These semiempirical scaling laws can be used to assess the merit of highly charged ion fluorescence x-ray generation in a wide range of applications.
Resumo:
We describe a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We call the method the R-matrix with time-dependence (RMT) method. Our starting point is a finite-difference numerical integrator (HELIUM), which has proved successful at describing few-electron atoms and atomic ions in strong laser fields with high accuracy. By exploiting the R-matrix division-of-space concept, we bring together a numerical method most appropriate to the multi-electron finite inner region (R-matrix basis set) and a different numerical method most appropriate to the one-electron outer region (finite difference). In order to exploit massively parallel supercomputers efficiently, we time-propagate the wavefunction in both regions by employing Arnoldi methods, originally developed for HELIUM.
Resumo:
Drawing on the theoretical insights of Paul Ricoeur this paper investigates the geographies of public remembrance in a post-conflict society. In Northern Ireland, where political divisions have found expression through acts of extreme violence over the past 30 years, questions of memory and an amnesty for forgetting have particular resonance both at the individual and societal level, and render Ricoeur’s framework particularly prescient. Since the signing of the Belfast Agreement in 1998, initiating the Peace Process through consociational structures, discovering a nomenclature and set of practices which would aid in the rapprochement of a deeply divided society has presented a complex array of issues. In this paper I examine the various practices of public remembrance of the 1998 bombing of Omagh as a means of understanding how memory-spaces evolve in a post-conflict context. In Omagh there were a variety of commemorative practices instituted and each, in turn, adopted a different contour towards achieving reconciliation with the violence and grief of the bombing. In particular the Garden of Light project is analysed as a collective monument which, with light as its metaphysical centre, invited the populace to reflect backward on the pain of the bombing while at the same time enabling the society to look forward toward a peaceful future where a politics of hope might eclipse a politics of despair.
Resumo:
We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).
Resumo:
We investigate the influence of the autoionizing 3s3p6nl resonances on the fifth harmonic generated by 200–240 nm laser fields interacting with Ar. To determine the influence of a multielectron response we develop the capability within time-dependent R-matrix theory to determine the harmonic spectra generated. The fifth harmonic is affected by interference between the response of a 3s electron and the response of a 3p electron, as demonstrated by the asymmetric profiles in the harmonic yields as functions of wavelength.