779 resultados para Atoll Lagoon Flushing
Resumo:
The paper deals with regularities of distribution of iron, manganese, copper, nickel, and vanadium in interstitial waters from different lithofacies types of bottom sediments on the profile from the coast of Mexico to the Wake Atoll in the Pacific Ocean. With increasing distance from the shore and with transition from reduced coastal sediments to oxidized deep-sea red clays concentration of iron and manganese in the interstitial waters greatly decreases. Elevated concentration of dissolved iron (0.34 mg/l) was observed only in highly reduced terrigenous sediments from the shelf and continental slope of Mexico. The highest concentrations of manganese (13.2 mg/l) were measured in hemipelagic carbonate-siliceous-clayey sediments. Compared to Pacific seawater interstitial waters are enriched in Fe, Mn, Cu, Ni, V. Interstitial waters contain only from 0.000004 to 1.2% of total contents of these elements in bottom sediments.
Resumo:
Thirty sediment samples from Tortonian to Pleistocene age of five ODP locations (Holes 650A, 651A, and 652A, and Sites 654 and 655) in the Marsili Basin, Vavilov Basin, and Sardinia Margin (Tyrrhenian Sea) were studied by organic geochemical methods including total organic carbon determination, Rock-Eval pyrolysis, bitumen extraction, pyrolysis-gas chromatography, and organic petrography. Six organic facies, including open ocean anoxia with variable terrestrial input, oxic open ocean, oxic tidal flat, mildly oxic lagoon, and anoxic lacustrine algal-bacterial mat environments, have been recognized in these sediments. The sediments below 500 m in Sardinia Margin are mature for significant hydrocarbon generation. Possible mature source-rock (Type I and IIB/III kerogen) and migrated bitumen occur in the deeper part of the section in Vavilov Basin and Sardinia Margin sediments. Sporadic sapropel formation observed in the studied Pliocene-Pleistocene sediment section is probably controlled by organic productivity due to nutrient supply by the rivers and terrestrial input associated with open ocean anoxia or anoxia caused by the material balance between rate of organic matter supplied by turbidites and organic matter consumption. Pliocene and Pleistocene sapropels are mostly immature and lie within Type II-III (precisely as IIA-IIB and IIB source rocks) kerogen maturation path.
Resumo:
Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying "outlier" shoreline positions. On top of natural beach variability observed along the reweighted beach sections, we found that one third of the analyzed islands show a statistically significant decrease in reweighted beach width since 1943. The total loss of beach area for all islands corresponds to 44% of the initial beach area. Variable shoreline trajectories suggest that changes in beach width on Takú Atoll are dependent on local control (that is, human activity and longshore sediment transport). Our results show that remote imagery with a low sampling frequency may be sufficient to characterize prominent morphological changes in planform beach configuration of reef islands.
Resumo:
Magnetic iron minerals are widespread and indicative sediment constituents in estuarine, coastal and shelf systems. We combine environmental magnetic, sedimentological and numerical methods to identify magnetite-enriched placer-like zones in a complex coastal system and delineate their formation mechanisms. Magnetic susceptibility and remanence measurements on 245 surficial sediment samples collected in and around Tauranga Harbour, the largest barrier-enclosed tidal estuary of New Zealand, reveal several discrete enrichment zones controlled by local hydrodynamic conditions. Active magnetite enrichment takes place in tidal channels, which feed into two coast-parallel nearshore magnetite-enriched belts centered at water depths of 6-10 m and 10-20 m. A close correlation between magnetite content and magnetic grain size was found, where higher susceptibility values are associated within coarser magnetic crystal sizes. Two key mechanisms for magnetite enrichment are identified. First, tide-induced residual currents primarily enable magnetite enrichment within the estuarine channel network. A coast-parallel, fine sand magnetite enrichment belt in water depths of less than 10 m along the barrier island has a strong decrease in magnetite content away from the southern tidal inlet and is apparently related to active coast-parallel transport combined with mobilizing surf zone processes. A second, less pronounced, but more uniform magnetite enrichment belt at 10-20 m water depth is composed of non-mobile, medium-coarse-grained relict sands, which have been reworked during post-glacial sea level transgression. We demonstrate the potential of magnetic methods to reveal and differentiate coastal magnetite enrichment patterns and investigate their formative mechanisms.
Resumo:
We measured respiration, egg production and fecal pellet production of five common copepod species, when fed on suspended or aggregated food from two mesocosm, + NP and + NPSi. We hypothetised that calanoid copepods (Temora longicornis, Acartia spp., Centropages spp.) would feed mainly on suspended food, and have low respiration and egestion rates when food was only available as aggregates, while harpacticoids and Oncaea spp. would mainly feed on aggregated food and have low metabolic rates when only suspended food was available. Copepods were collected from the lagoon, and adapted to experimental conditions for 24 h. Food suspension was collected from the mesocosms, and either offered to copepods directly (suspended food) or after rotating in a plankton wheel until most phytoplankton was aggregated together (aggregated food). After 24-h incubation we counted the produced eggs and pellets, and measured copepod respiration using microelectrodes.