965 resultados para Archival Tissue Samples
Resumo:
The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.
Resumo:
Musculoskeletal infections are infections of the bone and surrounding tissues. They are currently diagnosed based on culture analysis, which is the gold standard for pathogen identification. However, these clinical laboratory methods are frequently inadequate for the identification of the causative agents, because a large percentage (25-50%) of confirmed musculoskeletal infections are false negatives in which no pathogen is identified in culture. My data supports these results. The goal of this project was to use PCR amplification of a portion of the 16S rRNA gene to test an alternative approach for the identification of these pathogens and to assess the diversity of the bacteria involved. The advantages of this alternative method are that it should increase sample sensitivity and the speed of detection. In addition, bacteria that are non-culturable or in low abundance can be detected using this molecular technique. However, a complication of this approach is that the majority of musculoskeletal infections are polymicrobial, which prohibits direct identification from the infected tissue by DNA sequencing of the initial 16S rDNA amplification products. One way to solve this problem is to use denaturing gradient gel electrophoresis (DGGE) to separate the PCR products before DNA sequencing. Denaturing gradient gel electrophoresis (DGGE) separates DNA molecules based on their melting point, which is determined by their DNA sequence. This analytical technique allows a mixture of PCR products of the same length that electrophoreses through agarose gels as one band, to be separated into different bands and then used for DNA sequence analysis. In this way, the DGGE allows for the identification of individual bacterial species in polymicrobial-infected tissue, which is critical for improving clinical outcomes. By combining the 16S rDNA amplification and the DGGE techniques together, an alternative approach for identification has been used. The 16S rRNA gene PCR-DGGE method includes several critical steps: DNA extraction from tissue biopsies, amplification of the bacterial DNA, PCR product separation by DGGE, amplification of the gel-extracted DNA, and DNA sequencing and analysis. Each step of the method was optimized to increase its sensitivity and for rapid detection of the bacteria present in human tissue samples. The limit of detection for the DNA extraction from tissue was at least 20 Staphylococcus aureus cells and the limit of detection for PCR was at least 0.05 pg of template DNA. The conditions for DGGE electrophoreses were optimized by using a double gradient of acrylamide (6 – 10%) and denaturant (30-70%), which increased the separation between distinct PCR products. The use of GelRed (Biotium) improved the DNA visualization in the DGGE gel. To recover the DNA from the DGGE gels the gel slices were excised, shredded in a bead beater, and the DNA was allowed to diffuse into sterile water overnight. The use of primers containing specific linkers allowed the entire amplified PCR product to be sequenced and then analyzed. The optimized 16S rRNA gene PCR-DGGE method was used to analyze 50 tissue biopsy samples chosen randomly from our collection. The results were compared to those of the Memorial Hermann Hospital Clinical Microbiology Laboratory for the same samples. The molecular method was congruent for 10 of the 17 (59%) culture negative tissue samples. In 7 of the 17 (41%) culture negative the molecular method identified a bacterium. The molecular method was congruent with the culture identification for 7 of the 33 (21%) positive cultured tissue samples. However, in 8 of the 33 (24%) the molecular method identified more organisms. In 13 of the 15 (87%) polymicrobial cultured tissue samples the molecular method identified at least one organism that was also identified by culture techniques. Overall, the DGGE analysis of 16S rDNA is an effective method to identify bacteria not identified by culture analysis.
Resumo:
Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.
Resumo:
Myotonic dystrophy (DM), an autosomal dominant disorder mapping to human chromosome 19q13.3, is the most common neuromuscular disease in human adults.^ Following the identification of the mutation underlying the DM phenotype, an unstable (CTG)$\sb{n}$ trinucleotide repeat in the 3$\prime$ untranslated region (UTR) of a gene encoding a ser/thr protein kinase named DM protein kinase (DMPK), the study was targeted at two questions: (1) the identification of the disease-causing mechanism(s) of the unstable repeat, and at a more basic level, (2) the identification of the origin and the mechanism(s) involved in repeat instability. The first goal was to identify the pathophysiological mechanisms of the (CTG)$\sb{n}$ repeat.^ The normal repeat is transcribed but not translated; therefore, initial studies centered on the effect on RNA transcript levels. The vast majority of DM affecteds are heterozygous for the mutant expansion, so that the normal allele interferes with the analysis of the mutant allele. A quantitative allele-specific RT-PCR procedure was developed and applied to a spectrum of patient tissue samples and cell lines. Equal levels of unprocessed pre-mRNA were determined for the wild type (+) and disease (DM) alleles in skeletal muscle and cell lines of heterozygous DM patients, indicating that any nucleosome binding has no effect at the level of transcriptional initiation and transcription of the mutant DMPK locus. In contrast, processed mRNA levels from the DM allele were reduced relative to the + allele as the size of the expansion increased. The unstable repeat, therefore, impairs post-transcriptional processing of DM allele transcripts. This phenomenon has profound effects on overall DMPK locus steady-state transcript levels in cells missing a wild type allele and does not appear to be mediated by imprinting, decreased mRNA stability, generation of aberrant splice forms, or absence of polyadenylation of the mutant allele.^ In Caucasian DM subjects, the unstable repeat is in complete linkage disequlibrium with a single haplotype composed of nine alleles within and flanking DMPK over a physical distance of 30 kb. A detailed haplotype analysis of the DM region was conducted on a Nigerian (Yoruba) DM family, the only indigenous sub-Saharan DM case reported to date. Each affected member of this family had an expanded (CTG)$\sb{n}$ repeat in one of their DMPK alleles. However, unlike all other DM populations studied thus far, disassociation of the (CTG)$\sb{n}$ repeat expansion from other alleles of the putative predisposing haplotype was found. Thus, the expanded (CTG)$\sb{n}$ repeat in this family was the result of an independent mutational event. Consequently, the origin of DM is unlikely the result of a single mutational event, and the hypothesis that a single ancestral haplotype predisposes to repeat expansion is not compelling. (Abstract shortened by UMI.) ^
Resumo:
Approximately 10 to 15% of breast cancer patients develop a primary cancer in the contralateral breast. This study examined differences between women with unilateral compared with bilateral primary breast cancer. It focused on hormonal factors and family history, and evaluated the prevalences of invasive lobular histology and the replication error phenotype in the tumors. ^ Cases (n = 82) were patients at M.D. Anderson Cancer Center (MDACC) in Houston, Texas diagnosed with primary breast cancer in each breast between 1985 and 1994 inclusive. Controls (n = 82) were MDACC patients with primary cancer in a single breast diagnosed during the same interval, individually matched to cases. Data were obtained by in-person and/or telephone interview with the patient and/or proxy. Replication error phenotype was determined from archival tissue. ^ Diagnosis of breast, but not ovarian, cancer in a female first-degree relative (FFDR) was a strong risk factor for bilateral cancers. Cases had a significantly 3-fold higher excess of familial breast cancer than did controls (cases: O/E = 2.65, 95% CI = 1.85–3.69; controls: 0.86, 0.46–1.47; homogeneity: p = 0.00). Risk did not vary with menopausal status of the patient, but was greatest if a relative was diagnosed before age 45 (O/E = 38.9; 95% CI = 21.7–64.1). By implication, young first-degree relatives of patients with bilateral breast cancer are at very high risk of breast cancer themselves. Cases also had significantly fewer siblings than did controls. ^ Earlier menarche, and parity in the absence of lactation, were associated with bilateral cancers; age at menopause and parity with lactation were not. A history of alcohol consumption, particularly if heavy, carried a 3.4-fold risk (p = 0.03). The data suggested a slightly different pattern in risk factors according to menopausal status and interval between cancers. ^ Replication error phenotype was available for 59 probands. It was associated with bilateral cancers (particularly if diagnosed within one year of each other), increased age (p = 0.02) and negative nodal status. Invasive lobular histology was associated with bilateral disease but numbers were small. ^ These data suggest bilateral breast cancer arises in the context of a combination of familial and hormonal factors, and alcohol consumption. The relative importance of each factor may vary by age of the patient. ^
Resumo:
Beta1-integrins (beta1) represent cell surface receptors which mediate cell-matrix and cell-cell interactions. Fässler and Meyer described chimeric mice containing transgenic cells that express the LacZ gene instead of the beta1 gene. They observed beta1-negative cells in all germ layers at embryonic day E 8.5. Later in development, using a glucose phosphate isomerase assay of homogenized tissue samples, high levels of transgenic cells were found in skeletal muscle and gut, low levels in lung, heart, and kidney and none in the liver and spleen (Fässler and Meyer 1995). In order to study which cell types require beta1 during development of the primitive gut including its derivatives, chimeric fetuses containing 15 to 25% transgenic cells were obtained at days E 14.5 and E 15.5. They were LacZ (beta-galactosidase) stained "en bloc" and cross-sectioned head to tail. In esophagus, trachea, lung, stomach, hindgut, and the future urinary bladder, we observed various mesoderm-derived beta1-negative cells (e.g. fibroblasts, chondrocytes, endothelial cells, and smooth muscle cells) but no beta1-negative epithelial cells. Since the epithelia of lung, esophagus, trachea, stomach, hindgut, and urinary bladder are derived from the endodermal gut tube, we hypothesize that beta1 is essential for the development and/or survival of the epithelia of the fore- and hindgut and its derivatives.
Resumo:
The cpb2 gene of beta2-toxigenic Clostridium perfringens isolated from horses, cattle, sheep, human and pigs was sequenced. The cpb2 gene of equine and other non-porcine isolates differed from porcine isolates by the absence of an adenine in a poly A tract immediately downstream of the start codon in all non-porcine C. perfringens strains. This deletion involved formation of a cryptic gene harbouring a premature stop codon after only nine amino acid codons, while the full beta2-toxin protein consists of 265 amino acids. Immunoblots carried out with antibodies directed against a recombinant beta2-toxin showed the absence of expression of the beta2-toxin in equine and the other non-porcine strains under standard culture conditions. However, treatment of C. perfringens with the aminoglycosides gentamicin or streptomycin was able to induce expression of the cpb2 gene in a representative equine strain of this group, presumably by frameshifting. The presence of the beta2-toxin was revealed by immunohistology in tissue samples of small and large intestine from horses with severe typhlocolitis that had been treated before with gentamicin. This result may explain the finding that antibiotic treatment of horses affected by beta2-toxigenic C. perfringens leads to a more accentuated and fatal progression of equine typhlocolitis. Clinical observations show a reduced appearance of strong typhlocolitis in horses with intestinal complications admitted to hospital care since the standard use of gentamicin has been abandoned. This is the first report on expression of a bacterial toxin gene by antibiotic-induced ribosomal frameshifting.
Resumo:
OBJECTIVE To investigate the potential of doxycycline to reduce stromelysin and inducible nitric oxide synthase (iNOS) activity in dogs with osteoarthritis (OA) secondary to spontaneous cranial cruciate ligament (CCL) rupture. STUDY DESIGN Prospective, clinical study. ANIMALS Eighty-one dogs with OA secondary to CCL rupture and 54 normal dogs. METHODS Dogs with OA secondary to CCL rupture were divided into 2 groups before surgery. The Doxy-CCl group received 3 to 4 mg/kg doxycycline orally every 24 hours for 7 to 10 days (n = 35). The CCL group received no treatment (n = 46). Synovial fluid, articular cartilage, synovial membrane, and CCL samples were collected during surgery (Doxy-CCL group and CCL group) or immediately after euthanasia from healthy dogs (control group). Synovial fluid samples were examined cytologically. Total nitric oxide (NOt) concentrations were measured in the supernatant of explant cultures of all tissue samples, and stromelysin activity was measured in the supernatant of explant cultures of cartilage. RESULTS NOt concentrations measured in cartilage were significantly lower in the Doxy-CCL group than in the CCL group, but were not different from those measured in the control group. Doxycycline treatment did not have a significant effect on cartilage stromelysin levels. CONCLUSION The findings in this study indicate that doxycycline inhibits NO production in cartilage in dogs with CCL rupture. CLINICAL RELEVANCE Doxycycline may have a role in the treatment of canine OA by inhibiting NO production.
Resumo:
Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression.
Resumo:
The primary isolation of a Mycobacterium sp. of the Mycobacterium tuberculosis complex from an infected animal provides a definitive diagnosis of tuberculosis. However, as Mycobacterium bovis and Mycobacterium caprae are difficult to isolate, particularly for animals in the early stages of disease, success is dependent on the optimal performance of all aspects of the bacteriological process, from the initial choice of tissue samples at post-mortem examination or clinical samples, to the type of media and conditions used to cultivate the microorganism. Each step has its own performance characteristics, which can contribute to sensitivity and specificity of the procedure, and may need to be optimized in order to achieve the gold standard diagnosis. Having isolated the slow-growing mycobacteria, species identification and fine resolution strain typing are keys to understanding the epidemiology of the disease and to devise strategies to limit transmission of infection. New technologies have emerged that can now even discriminate different isolates from the same animal. In this review we highlight the key factors that contribute to the accuracy of bacteriological diagnosis of M. bovis and M. caprae, and describe the development of advanced genotyping techniques that are increasingly used in diagnostic laboratories for the purpose of supporting detailed epidemiological investigations.
Resumo:
Abortion in ruminants is a major cause of economic loss worldwide, and the management and control of outbreaks is important in limiting their spread, and in preventing zoonotic infections. Given that rapid and accurate laboratory diagnosis is central to controlling abortion outbreaks, the submission of tissue samples to laboratories offering the most appropriate tests is essential. Direct antigen and/or DNA detection methods are the currently preferred methods of reaching an aetiological diagnosis, and ideally these results are confirmed by the demonstration of corresponding macroscopic and/or histopathological lesions in the fetus and/or the placenta. However, the costs of laboratory examinations may be considerable and, even under optimal conditions, the percentage of aetiological diagnoses reached can be relatively low. This review focuses on the most commonly occurring and important abortifacient pathogens of ruminant species in Europe highlighting their epizootic and zoonotic potential. The performance characteristics of the various diagnostic methods used, including their specific advantages and limitations, are discussed.
Resumo:
BACKGROUND Lower extremity ischemia-reperfusion injury (IRI)-prolonged ischemia and the subsequent restoration of circulation-may result from thrombotic occlusion, embolism, trauma, or tourniquet application in surgery. The aim of this study was to assess the effect of low-molecular-weight dextran sulfate (DXS) on skeletal muscle IRI. METHODS Rats were subjected to 3 h of ischemia and 2 or 24 h of reperfusion. To induce ischemia the femoral artery was clamped and a tourniquet placed under the maintenance of the venous return. DXS was injected systemically 10 min before reperfusion. Muscle and lung tissue samples were analyzed for deposition of immunoglobulin M (IgM), IgG, C1q, C3b/c, fibrin, and expression of vascular endothelial-cadherin and bradykinin receptors b1 and b2. RESULTS Antibody deposition in reperfused legs was reduced by DXS after 2 h (P < 0.001, IgM and IgG) and 24 h (P < 0.001, IgM), C3b/c deposition was reduced in muscle and lung tissue (P < 0.001), whereas C1q deposition was reduced only in muscle (P < 0.05). DXS reduced fibrin deposits in contralateral legs after 24 h of reperfusion but did not reduce edema in muscle and lung tissue or improve muscle viability. Bradykinin receptor b1 and vascular endothelial-cadherin expression were increased in lung tissue after 24 h of reperfusion in DXS-treated and non-treated rats but bradykinin receptor b2 was not affected by IRI. CONCLUSIONS In contrast to studies in myocardial infarction, DXS did not reduce IRI in this model. Neither edema formation nor viability was improved, whereas deposition of complement and coagulation components was significantly reduced. Our data suggest that skeletal muscle IRI may not be caused by the complement or coagulation alone, but the kinin system may play an important role.
Resumo:
BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.
Resumo:
BACKGROUND Prostate cancer (PCa) is a very heterogeneous disease with respect to clinical outcome. This study explored differential DNA methylation in a priori selected genes to diagnose PCa and predict clinical failure (CF) in high-risk patients. METHODS A quantitative multiplex, methylation-specific PCR assay was developed to assess promoter methylation of the APC, CCND2, GSTP1, PTGS2 and RARB genes in formalin-fixed, paraffin-embedded tissue samples from 42 patients with benign prostatic hyperplasia and radical prostatectomy specimens of patients with high-risk PCa, encompassing training and validation cohorts of 147 and 71 patients, respectively. Log-rank tests, univariate and multivariate Cox models were used to investigate the prognostic value of the DNA methylation. RESULTS Hypermethylation of APC, CCND2, GSTP1, PTGS2 and RARB was highly cancer-specific. However, only GSTP1 methylation was significantly associated with CF in both independent high-risk PCa cohorts. Importantly, trichotomization into low, moderate and high GSTP1 methylation level subgroups was highly predictive for CF. Patients with either a low or high GSTP1 methylation level, as compared to the moderate methylation groups, were at a higher risk for CF in both the training (Hazard ratio [HR], 3.65; 95% CI, 1.65 to 8.07) and validation sets (HR, 4.27; 95% CI, 1.03 to 17.72) as well as in the combined cohort (HR, 2.74; 95% CI, 1.42 to 5.27) in multivariate analysis. CONCLUSIONS Classification of primary high-risk tumors into three subtypes based on DNA methylation can be combined with clinico-pathological parameters for a more informative risk-stratification of these PCa patients.
Resumo:
Our previous gene expression analysis identified phospholipase A2 group IIA (PLA2G2A) as a potential biomarker of ovarian endometriosis. The aim of this study was to evaluate PLA2G2A mRNA and protein levels in tissue samples (endometriomas and normal endometrium) and in serum and peritoneal fluid of ovarian endometriosis patients and control women. One-hundred and sixteen women were included in this study: the case group included 70 ovarian endometriosis patients, and the control group included 38 healthy women and 8 patients with benign ovarian cysts. We observed 41.6-fold greater PLA2G2A mRNA levels in endometrioma tissue, compared to normal endometrium tissue. Using Western blotting, PLA2G2A was detected in all samples of endometriomas, but not in normal endometrium, and immunohistochemistry showed PLA2G2A-specific staining in epithelial cells of endometrioma paraffin sections. However, there were no significant differences in PLA2G2A levels between cases and controls according to ELISA of peritoneal fluid (6.0 ± 4.4 ng/ml, 6.6 ± 4.3 ng/ml; p = 0.5240) and serum (2.9 ± 2.1 ng/ml, 3.1 ± 2.2 ng/ml; p = 0.7989). Our data indicate that PLA2G2A is implicated in the pathophysiology of ovarian endometriosis, but that it cannot be used as a diagnostic biomarker.