885 resultados para Application of Radar Technologies in Hydrology
Resumo:
The Differential Scanning Calorimetry (DSC) was used to study the thermal behavior of hair samples and to verify the possibility of identifying an individual based on DSC curves from a data bank. Hair samples of students and officials from Instituto de Química de Araraquara, UNESP were obtained to build up a data bank. Thus to sought an individual, under incognito participant of this data bank, was identified using DSC curves.
Resumo:
A field experiment conducted with the irrigated rice cultivar BRS Formoso, to assess the efficiency of calcinated serpentinite as a silicon source on grain yield was utilized to study its effect on leaf blast severity and tissue sugar levels. The treatments consisted of five rates of calcinated serpentinite (0, 2, 4, 6, 8 Mg.ha-1) incorporated into the soil prior to planting. The leaf blast severity was reduced at the rate of 2.96% per ton of calcinated serpentinite. The total tissue sugar content decreased significantly as the rates of serpentinite applied increased (R² = 0.83). The relationship between the tissue sugar content and leaf blast severity was linear and positive (R² = 0.81). The decrease in leaf blast severity with increased rates of calcinated serpentinite was also linear (R²= 0.96) and can be ascribed to reduced sugar level.
Resumo:
Radiostereometric analysis (RSA) is a highly accurate method for the measurement of in vivo micromotion of orthopaedic implants. Validation of the RSA method is a prerequisite for performing clinical RSA studies. Only a limited number of studies have utilised the RSA method in the evaluation of migration and inducible micromotion during fracture healing. Volar plate fixation of distal radial fractures has increased in popularity. There is still very little prospective randomised evidence supporting the use of these implants over other treatments. The aim of this study was to investigate the precision, accuracy, and feasibility of using RSA in the evaluation of healing in distal radius fractures treated with a volar fixed-angle plate. A physical phantom model was used to validate the RSA method for simple distal radius fractures. A computer simulation model was then used to validate the RSA method for more complex interfragmentary motion in intra-articular fractures. A separate pre-clinical investigation was performed in order to evaluate the possibility of using novel resorbable markers for RSA. Based on the validation studies, a prospective RSA cohort study of fifteen patients with plated AO type-C distal radius fractures with a 1-year follow-up was performed. RSA was shown to be highly accurate and precise in the measurement of fracture micromotion using both physical and computer simulated models of distal radius fractures. Resorbable RSA markers demonstrated potential for use in RSA. The RSA method was found to have a high clinical precision. The fractures underwent significant translational and rotational migration during the first two weeks after surgery, but not thereafter. Maximal grip caused significant translational and rotational interfragmentary micromotion. This inducible micromotion was detectable up to eighteen weeks, even after the achievement of radiographic union. The application of RSA in the measurement of fracture fragment migration and inducible interfragmentary micromotion in AO type-C distal radius fractures is feasible but technically demanding. RSA may be a unique tool in defining the progress of fracture union.
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
The use of renewable fuels, such as the biodiesel, can ease the demand of fossil fuel for the power generation and transportation fields in rural area. In this work, the performance impact of the application of castor oil biodiesel is evaluated with an automotive and a stationary diesel engine. The application of B20 and B10 biodiesel blends and pre-heated net biodiesel is considered. The viability of the employment of B10 and B20 blends to mobility and power generation was observed from dynamometric bench tests, where this blends performed similar to fossil diesel. With the pre-heated net biodiesel, however, a brake torque loss and a specific consumption increase were observed with relation to diesel fuel.
Resumo:
The aim of this study was to evaluate the efficiency of a sequencing batch reactor (SBR) on biological removal of nitrogen from cattle slaughterhouse wastewater by nitrification/denitrification processes. The effects of initial concentration of ammoniacal nitrogen were investigated at 100; 150 and 200 mg L-1 and air flow rate at 0.125; 0.375 and 0.625 L min¹ Lreactor-1 on the nitrogen compounds removal, by a Central Composite Rotational Design (CCRD) configuration. There were variations from 9.2 to 94.9%, 4.0 to 19.6% and 20.8 to 92.0% in the conversion of ammoniacal nitrogen to nitrate and nitrite concentration and removal of total nitrogen, respectively. The increase of air flow rate and decrease of the initial concentration of ammoniacal nitrogen resulted in higher efficiencies of total nitrogen removal, as well as the conversion of ammoniacal nitrogen to nitrate. During the pre-established intervals of this study, the removal and conversion efficiencies of nitrogen compounds above 85% were achieved in air flow rate variations from 0.375 to 0.725 L min-1 Lreactor-1 and initial concentration of ammoniacal nitrogen from 80 to 200 mg L-1. On denitrification process, we obtained efficiencies from 91.5 to 96.9% on the removal of nitrite/nitrate and from 78.3 to 87.9% on the removal of organic matter.
Resumo:
The study aimed to evaluate a methodology to quantify the porosity of the soil using computed tomography in areas under no-tillage, conventional tillage and native forest. Three soil management systems were selected for the study: forest, conventional tillage and no-tillage. In each soil management system, undisturbed soil samples were collected in the surface layer (0.0 to 0.10 m). The tomographic images were obtained using a X-ray microtomography. After obtaining the images, they were processed, and a methodology was evaluated for image conversion into numerical values. The statistical method which provided the greatest accuracy was the percentile method. The methodology used to analyze the tomographic image allowed quantifying the porosity of the soil under different soil management. The method enabled the characterization of soil porosity in a non-evasive and non-destructive way.
Resumo:
Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.
Resumo:
The aim of this study was to describe the demographic, clinicopathological, biological and morphometric features of Libyan breast cancer patients. The supporting value of nuclear morphometry and static image cytometry in the sensitivity for detecting breast cancer in conventional fine-needle aspiration biopsies were estimated. The findings were compared with findings in breast cancer in Finland and Nigeria. In addation, the value of ER and PR were evaluated. There were 131 histological samples, 41 cytological samples, and demographic and clinicopathological data from 234 Libyan patients. The Libyan breast cancer is dominantly premenopausal and in this feature it is similar to breast cancer in sub-Saharan Africans, but clearly different from breast cancer in Europeans, whose cancers are dominantly postmenopausal in character. At presention most Libyan patients have locally advanced disease, which is associated with poor survival rates. Nuclear morphometry and image DNA cytometry agree with earlier published data in the Finnish population and indicate that nuclear size and DNA analysis of nuclear content can be used to increase the cytological sensitivity and specificity in doubtful breast lesions, particularly when free cell sampling method is used. Combination of the morphometric data with earlier free cell data gave the following diagnostic guidelines: Range of overlap in free cell samples: 55 μm2 -71 μm2. Cut-off values for diagnostic purposes: Mean nuclear area (MNA) >54 μm2 for 100% detection of malignant cases (specificity 84 %), MNA < 72 μm2 for 100% detection of benign cases (sensitivity 91%). Histomorphometry showed a significant correlation between the MNA and most clinicopathological features, with the strongest association observed for histological grade (p <0.0001). MNA seems to be a prognosticator in Libyan breast cancer (Pearson’s test r = - 0.29, p = 0.019), but at lower level of significance than in the European material. A corresponding relationship was not found in shape-related morphometric features. ER and PR staining scores were in correlation with the clinical stage (p= 0.017, and 0.015, respectively), and also associated with lymph node negative patients (p=0.03, p=0.05, respectively). Receptor-positive (HR+) patients had a better survival. The fraction of HR+ cases among Libyan breast cancers is about the same as the fraction of positive cases in European breast cancer. The study suggests that also weak staining (corresponding to as few as 1% positive cells) has prognostic value. The prognostic significance may be associated with the practice to use antihormonal therapy in HR+ cases. The low survival and advanced presentation is associated with active cell proliferation, atypical nuclear morphology and aneuploid nuclear DNA content in Libyan breast cancer patients. The findings support the idea that breast cancer is not one type of disease, but should probably be classified into premenopausal and post menopausal types.
Resumo:
Scrum is an agile project management approach that has been widely practiced in the software development projects. It has proven to increase quality, productivity, customer satisfaction, transparency and team morale among other benefits from its implementation. The concept of scrum is based on the concepts of incremental innovation strategies, lean manufacturing, kaizen, iterative development and so on and is usually contrasted with the linear development models such as the waterfall method in the software industry. The traditional approaches to project management such as the waterfall method imply intensive upfront planning and approval of the entire project. These sort of approaches work well in the well-defined stable environments where all the specifications of the project are known in the beginning. However, in the uncertain environments when a project requires continuous development and incorporation of new requirements, they do not tend to work well. The scrum framework was inspiraed by Nonaka’s article about new product developement and was later adopted by software development practitioners. This research explores conditions for and benefits of the application of scrum framework beyond software development projects. There are currently a few case studies on the scrum implementation in non-software projects, but there is a noticeable trend of it in the scrum practitioners’ community. The research is based on the real-life context multiple case study analysis of three different non-software projects. The results of the research showed that in order to succeed within scrum projects need to satisfy certain conditions – necessary and sufficient. Among them the key factors are uncertainty of the project environment, not well defined outcomes, commitment of the scrum teams and management support. The top advantages of scrum implementation identified in the present research include improved transparency, accountability, team morale, communications, cooperation and collaboration. Further researches are advised to be carried out in order to validate these findings on a larger sample and to focus on more specific areas of scrum project management implementation.
Resumo:
Thousands of tons of pharmaceuticals are consumed yearly worldwide. Due to the continuous and increasing consumption and their incomplete elimination in wastewater treatment plants (WWTP), pharmaceuticals and their metabolites can be detected in receiving waters, although at low concentrations (ng to low μg/L). As bioactive molecules the presence of pharmaceuticals in the aquatic environment must be considered potentially hazardous for the aquatic organisms. In this thesis, the biotransformation and excretion of pharmaceuticals in fish was studied. The main biotransformation pathways of three anti‐inflammatory drugs, diclofenac, naproxen and ibuprofen, in rainbow trout were glucuronidation and taurine conjugation of the parent compounds and their phase I metabolites. The same metabolites were present in fish bile in aquatic exposures as in fish dosed with intraperitoneal injection. Higher bioconcentration factor in bile (BCFbile) was found for ibuprofen when compared to diclofenac and naproxen. Laboratory exposure studies were followed by a study of uptake of pharmaceuticals in a wild fish population living in lake contaminated with WWTP effluents. Of the analyzed 17 pharmaceuticals and six phase I metabolites, only diclofenac, naproxen and ibuprofen was present in bream and roach bile. It was shown, that diclofenac, naproxen and ibuprofen excreted by the liver can be found in rainbow trout and in two native fish species living in the receiving waters. In the bream and roach bile, the concentrations of diclofenac, naproxen and ibuprofen were roughly 1000 times higher than those found in the lake water, while in the laboratory exposures, the bioconcentration of the compounds and their metabolites in rainbow trout bile were at the same level as in wild fish or an order of magnitude higher. Thus, the parent compounds and their metabolites in fish bile can be used as a reliable biomarker to monitor the exposure of fish to environmental pharmaceuticals present in water receiving discharges from WWTPs.
Resumo:
This work deals with an hybrid PID+fuzzy logic controller applied to control the machine tool biaxial table motions. The non-linear model includes backlash and the axis elasticity. Two PID controllers do the primary table control. A third PID+fuzzy controller has a cross coupled structure whose function is to minimise the trajectory contour errors. Once with the three PID controllers tuned, the system is simulated with and without the third controller. The responses results are plotted and compared to analyse the effectiveness of this hybrid controller over the system. They show that the proposed methodology reduces the contour error in a proportion of 70:1.
Resumo:
The demand for more efficient manufacturing processes has been increasing in the last few years. The cold forging process is presented as a possible solution, because it allows the production of parts with a good surface finish and with good mechanical properties. Nevertheless, the cold forming sequence design is very empirical and it is based on the designer experience. The computational modeling of each forming process stage by the finite element method can make the sequence design faster and more efficient, decreasing the use of conventional "trial and error" methods. In this study, the application of a commercial general finite element software - ANSYS - has been applied to model a forming operation. Models have been developed to simulate the ring compression test and to simulate a basic forming operation (upsetting) that is applied in most of the cold forging parts sequences. The simulated upsetting operation is one stage of the automotive starter parts manufacturing process. Experiments have been done to obtain the stress-strain material curve, the material flow during the simulated stage, and the required forming force. These experiments provided results used as numerical model input data and as validation of model results. The comparison between experiments and numerical results confirms the developed methodology potential on die filling prediction.
Resumo:
Choice of industrial development options and the relevant allocation of the research funds become more and more difficult because of the increasing R&D costs and pressure for shorter development period. Forecast of the research progress is based on the analysis of the publications activity in the field of interest as well as on the dynamics of its change. Moreover, allocation of funds is hindered by exponential growth in the number of publications and patents. Thematic clusters become more and more difficult to identify, and their evolution hard to follow. The existing approaches of research field structuring and identification of its development are very limited. They do not identify the thematic clusters with adequate precision while the identified trends are often ambiguous. Therefore, there is a clear need to develop methods and tools, which are able to identify developing fields of research. The main objective of this Thesis is to develop tools and methods helping in the identification of the promising research topics in the field of separation processes. Two structuring methods as well as three approaches for identification of the development trends have been proposed. The proposed methods have been applied to the analysis of the research on distillation and filtration. The results show that the developed methods are universal and could be used to study of the various fields of research. The identified thematic clusters and the forecasted trends of their development have been confirmed in almost all tested cases. It proves the universality of the proposed methods. The results allow for identification of the fast-growing scientific fields as well as the topics characterized by stagnant or diminishing research activity.