948 resultados para Ambient atmosphere
Resumo:
supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a `moving optical-mark' at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. `Product of velocity of optical-mark and distance' versus `non-dimensional velocity' is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Resumo:
Composition and microstructure of the composite films can be tailored by controlling the CVD process parameters if an appropriate model can be suggested for quantitative prediction of growth. This is possible by applying equilibrium thermodynamics. A modification of such standard modeling procedure was required to account for the deposition of a hybrid film comprised of carbon nanotubes (CNTs), metallic iron (Fe), and magnetite (Fe3O4), a composite useful for energy storage. In contrast with such composite nature of the deposits obtained by inert-ambient CVD using Fe(acac)3 as precursor, equilibrium thermodynamic modeling with standard procedure predicts the deposition of only Fe3C and carbon, without any co-deposition of Fe and Fe3O4. A modification of the procedure comprising chemical reasoning is therefore proposed herein, which predicts simultaneous deposition of FeO1-x, Fe3C, Fe3O4 and C. At high temperatures and in a carbon-rich atmosphere, these convert to Fe3O4, Fe and C, in agreement with experimental CVD. Close quantitative agreement between the modified thermodynamic modeling and experiment validates the reliability of the modified procedure. Understanding of the chemical process through thermodynamic modeling provides potential for control of CVD process parameters to achieve desired hybrid growth. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
A comprehensive model of laser propagation in the atmosphere with a complete adaptive optics (AO) system for phase compensation is presented, and a corresponding computer program is compiled. A direct wave-front gradient control method is used to reconstruct the wave-front phase. With the long-exposure Strehl ratio as the evaluation parameter, a numerical simulation of an AO system in a stationary state with the atmospheric propagation of a laser beam was conducted. It was found that for certain conditions the phase screen that describes turbulence in the atmosphere might not be isotropic. Numerical experiments show that the computational results in imaging of lenses by means of the fast Fourier transform (FFT) method agree well with those computed by means of an integration method. However, the computer time required for the FFT method is 1 order of magnitude less than that of the integration method. Phase tailoring of the calculated phase is presented as a means to solve the problem that variance of the calculated residual phase does not correspond to the correction effectiveness of an AO system. It is found for the first time to our knowledge that for a constant delay time of an AO system, when the lateral wind speed exceeds a threshold, the compensation effectiveness of an AO system is better than that of complete phase conjugation. This finding indicates that the better compensation capability of an AO system does not mean better correction effectiveness. (C) 2000 Optical Society of America.
Resumo:
Modeling study is performed to compare the flow and heat transfer characteristics of laminar and turbulent argon thermal-plasma jets impinging normally upon a flat plate in ambient air. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of argon in the argon-air mixture for the laminar and the turbulent cases, respectively. Modeling results presented include the flow, temperature and argon concentration fields, the air mass flow-rates entrained into the impinging plasma jets, and the distributions of the heat flux density on the plate surface. It is found that the formation of a radial wall jet on the plate surface appreciably enhances the mass flow rate of the ambient air entrained into the laminar or turbulent plasma impinging-jet. When the plate standoff distance is comparatively small, there exists a significant difference between the laminar and turbulent plasma impinging-jets in their flow fields due to the occurrence of a large closed recirculation vortex in the turbulent plasma impinging-jet, and no appreciable difference is found between the two types of jets in their maximum values and distributions of the heat flux density at the plate surface. At larger plate standoff distances, the effect of the plate on the jet flow fields only appears in the region near the plate, and the axial decaying-rates of the plasma temperature, axial velocity and argon mass fraction along the axis of the laminar plasma impinging-jet become appreciably less than their turbulent counterparts.
Resumo:
采用双向耦合的双流体模型,研究了大气悬浮沙尘的存在对大气边界层中层流底层流动特性及摩阻系数的影响,计算并讨论了不同沙尘含量下含尘大气相对于无尘大气摩阻系数的变化。结果表明:摩阻系数的变化取决于悬浮沙尘的初始运动状态和质量载荷率。
Resumo:
Three-dimensional modeling results show that the appearance of the long laminar plasma jet is less influenced by natural convection even as it is issuing into ambient air horizontally. However, plasma parameter distributions may deviate from axi-symmetry
Resumo:
Modeling study is performed to reveal the special features of the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Two different types of jet flows are considered, i.e., the argon plasma jet is impinging normally upon a flat substrate located in atmospheric air surroundings or is freely issuing into the ambient air. It is found that the existence of the substrate not only changes the plasma temperature, velocity and species concentration distributions in the near-substrate region, but also significantly enhances the mass flow rate of the ambient air entrained into the jet due to the additional contribution to the gas entrainment of the wall jet formed along the substrate surface. The fraction of the additional entrainment of the wall jet in the total entrained-air flow rate is especially high for the laminar impinging plasma jet and for the case with shorter substrate standoff distances. Similarly to the case of cold-gas free jets, the maximum mass flow-rate of ambient gas entrained into the turbulent impinging or free plasma jet is approximately directly proportional to the mass flow rate at the jet inlet. The maximum mass flow-rate of ambient gas entrained into the laminar impinging plasma jet slightly increases with increasing jet-inlet velocity but decreases with increasing jet-inlet temperature.
Resumo:
利用层流等离子体射流,以普通工程铁丝为喷涂材料,在Q235基体表面制备金属涂层,并利用喷涂系统的参数可调性研究工艺参数对涂层质量的影响。结果表明,利用层流等离子体射流喷涂可以得到具有典型层状结构、氧化较少的致密涂层。
Resumo:
在气固两相流的单向耦合模型框架下,研究大气悬浮沙尘在阵风作用下的运动轨迹及其随大气风速、沙尘粒径的变化,揭示了在Stokes阻力、Saffman力和重力共同作用下,沙尘悬移可能转换为跃移的现象。
Resumo:
When materials processing is conducted in air surroundings by use of an impinging plasma jet, the ambient air will be entrained into the materials processing region, resulting in unfavorable oxidation of the feedstock metal particles injected into the plasma jet and of metallic substrate material. Using a cylindrical solid shield may avoid the air entrainment if the shield length is suitably selected and this approach has the merit that expensive vacuum chamber and its pumping system are not needed. Modeling study is thus conducted to reveal how the length of the cylindrical solid shield affects the ambient air entrainment when materials processing (spraying, remelting, hardening, etc.) is conducted by use of a turbulent or laminar argon plasma jet impinging normally upon a flat substrate in atmospheric air. It is shown that the mass flow rate of the ambient air entrained into the impinging plasma jet cannot be appreciably reduced unless the cylindrical shield is long enough. In order to completely avoid the air entrainment, the gap between the downstream-end section of the cylindrical solid shield and the substrate surface must be carefully selected, and the suitable size of the gap for the turbulent plasma jet is appreciably larger than that for the laminar one. The overheating of the solid shield or the substrate could become a problem for the turbulent case, and thus additional cooling measure may be needed when the entrainment of ambient air into the turbulent impinging plasma jet is to be completely avoided.
Resumo:
Capillary forces are dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are thought to be dependent on water film thickness, relative humidity and the free energy of the water film. In this paper, besides these factors, we study the nature of the 'pull-off' force on a variety of atmospheres as a function of the contact time. It is found that capillary forces strongly depend on the contact time. In lower relative humidity atmosphere, the adhesion force is almost independent of the contact time. However, in higher relative humidity, the adhesion force increases with the contact time. Based on the experiment and a model that we present in this paper, the growth of the liquid bridge can be seen as undergoing two processes: one is water vapour condensation; the other is the motion of the thin liquid film that is absorbed on the substrate. The experiment and the growth model presented in this paper have direct relevance to the working mechanism of AFM in ambient air.
Resumo:
A two-dimensional model of a magnetic flux tube confined in a gravitational stratified atmosphere is discussed. The magnetic field in the flux tube is assumed to be force-free. By using the approximation of large scale height, the problem of a free boundary with nonlinear conditions may be reduced to one involving a fixed boundary. The two-dimensional features are obtained by applying the perturbation method and adopting the Luest-Schlueter model as the basic state. The results show that the configuration of a flux tube confined in a gravitational stratified atmosphere is divergent, and the more twisted the magnetic field, the more divergent is the flux tube.
Resumo:
Modeling results are presented concerning the characteristicsoflaminar and turbulentargonplasmajetsimpingingnormally upon a flat plate (workpiece) in ambient air. It is found that the presence of the flat plate significantly enhances the entrainment rate of ambient air into the jets and affects on the flow and temperature fields in the near-plate region of the jets. At comparatively large distances between the plate and the jet inlet, the axial gradients of the plasma parameters in the laminarplasmaimpinging-jets assume values much less than those in the turbulentplasmaimpinging-jets.