999 resultados para Age, calibrated
Resumo:
A composite record (LO09-14) of three sediment cores from the subpolar North Atlantic (Reykjanes Ridge) was investigated in order to assess surface ocean variability during the last 11 kyr. The core site is today partly under the influence of the Irminger Current (IC), a branch of the North Atlantic Drift continuing northwestward around Iceland. However, it is also proximal to the Sub-Arctic Front (SAF) that may cause extra dynamic hydrographic conditions. We used statistical methods applied to the fossil assemblages of diatoms to reconstruct quantitative sea surface temperatures (SSTs). Our investigations give evidence for different regional signatures of Holocene surface oceanographic changes in the North Atlantic. Core LO09-14 reveal relatively low and highly variable SSTs during the early Holocene, indicating a weak IC and increased advection of subpolar water over the site. A mid-Holocene thermal optimum with a strong IC occurs from 7.5 to 5 kyr and is followed by cooler and more stable late Holocene surface conditions. Several intervals throughout the Holocene are dominated by the diatom species Rhizosolenia borealis, which we suggest indicates proximity to a strongly defined convergence front, most likely the SAF. Several coolings, reflecting southeastward advection of cold and ice-bearing waters, occur at 10.4, 9.8, 8.3, 7.9, 6.4, 4.7, 4.3 and 2.8 kyr. The cooling events recorded in the LO09-14 SSTs correlate well with both other surface records from the area and the NADW reductions observed at ODP Site 980 indicating a surface-deepwater linkage through the Holocene.
Resumo:
The Sulu Sea is located in the 'warm pool' of the western Pacific Ocean, where mean annual temperatures are the highest of anywhere on Earth. Because this large heat source supplies the atmosphere with a significant portion of its water vapour and latent heat, understanding the climate history of the region is important for reconstructing global palaeoclimate and for predicting future climate change. Changes in the oxygen isotope composition of planktonic foraminifera from Sulu Sea sediments have previously been shown to reflect changes in the planetary ice volume at glacial-interglacial and millenial timeseales, and such records have been obtained for the late Pleistocene epoch and the last deglaciation (Linsley and Thunell, 1990, doi:10.1029/PA005i006p01025; Lindley and Dunbar, 1994, doi:10.1029/93PA03216; Kudrass et al., 1991, doi:10.1038/349406a0). Here I present results that extend the millenial time resolution record back to 150,000 years before present. On timescales of around 10,000 years, the Sulu Sea oxygen-isotope record matches changes in sea level deduced from coral terraces on the Huon peninsula (Chappell and Shackleton, doi:10.1038/324137a0). This is particularly the case during isotope stage 3 (an interglacial period 23,000 to 58,000 years ago) where the Sulu Sea oxygen-isotope record deviates from the SPECMAP deep-ocean oxygen-isotope record (Imbrie et al., 1984). Thus these results support the idea (Chappell and Shackleton, doi:10.1038/324137a0; Shackleton, 1987, doi:10.1016/0277-3791(87)90003-5) that there were higher sea levels and less continental ice during stage 3 than the SPECMAP record implies and that sea level during this interglacial was just 40-50 metres below present levels. The subsequent rate of increase in continental ice volume during the return to full glacial conditions was correspondingly faster than previously thought.