928 resultados para Activité tyrosine kinase


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Memo is a conserved protein that was identified as an essential mediator of tumor cell motility induced by receptor tyrosine kinase activation. Here we show that Memo null mouse embryonic fibroblasts (MEFs) are impaired in PDGF-induced migration and this is due to a defect in sphingosine-1-phosphate (S1P) signaling. S1P is a bioactive phospholipid produced in response to multiple stimuli, which regulates many cellular processes. S1P is secreted to the extracellular milieu where it exerts its function by binding a family of G-protein coupled receptors (S1PRs), causing their activation in an autocrine or paracrine manner. The process, termed cell-autonomous S1PR signaling, plays a role in survival and migration. Indeed, PDGF uses cell-autonomous S1PR signaling to promote cell migration; we show here that this S1P pathway requires Memo. Using vascular endothelial cells (HUVECs) with Memo knock-down we show that their survival in conditions of serum-starvation is impaired. Furthermore, Memo loss in HUVECs causes a reduction of junctional VE-cadherin and an increase in sprout formation. Each of these phenotypes is rescued by S1P or S1P agonist addition, showing that Memo also plays an important role in cell-autonomous S1PR signaling in endothelial cells. We also produced conventional and endothelial cell-specific conditional Memo knock-out mouse strains and show that Memo is essential for embryonic development. Starting at E13.5 embryos of both strains display bleeding and other vascular problems, some of the phenotypes that have been described in mouse strains lacking S1PRs. The essential role of Memo in embryonic vascular development may be due in part to alterations in S1P signaling. Taken together our results show that Memo has a novel role in the S1P pathway and that Memo is needed to promote cell-autonomous S1PR activation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION Myasthenia gravis is an autoimmune disease characterized by fluctuating muscle weakness. It is often associated with other autoimmune disorders, such as thyroid disease, rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid syndrome. Many aspects of autoimmune diseases are not completely understood, particularly when they occur in association, which suggests a common pathogenetic mechanism. CASE PRESENTATION We report a case of a 42-year-old Caucasian woman with antiphospholipid syndrome, in whom myasthenia gravis developed years later. She tested negative for both antibodies against the acetylcholine receptor and against muscle-specific receptor tyrosine-kinase, but had typical decremental responses at the repetitive nerve stimulation testing, so that a generalized myasthenia gravis was diagnosed. Her thromboplastin time and activated partial thromboplastin time were high, anticardiolipin and anti-β2 glycoprotein-I antibodies were slightly elevated, as a manifestation of the antiphospholipid syndrome. She had a good clinical response when treated with a combination of pyridostigmine, prednisone and azathioprine. CONCLUSIONS Many patients with myasthenia gravis test positive for a large variety of auto-antibodies, testifying of an immune dysregulation, and some display mild T-cell lymphopenia associated with hypergammaglobulinemia and B-cell hyper-reactivity. Both of these mechanisms could explain the occurrence of another autoimmune condition, such as antiphospholipid syndrome, but further studies are necessary to shed light on this matter.Clinicians should be aware that patients with an autoimmune diagnosis such as antiphospholipid syndrome who develop signs and neurological symptoms suggestive of myasthenia gravis are at risk and should prompt an emergent evaluation by a specialist.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vast majority of chronic myeloid leukemia patients express a BCR-ABL1 fusion gene mRNA encoding a 210 kDa tyrosine kinase which promotes leukemic transformation. A possible differential impact of the corresponding BCR-ABL1 transcript variants e13a2 ("b2a2") and e14a2 ("b3a2") on disease phenotype and outcome is still a subject of debate. A total of 1105 newly diagnosed imatinib-treated patients were analyzed according to transcript type at diagnosis (e13a2, n=451; e14a2, n=496; e13a2+e14a2, n=158). No differences regarding age, sex, or Euro risk score were observed. A significant difference was found between e13a2 and e14a2 when comparing white blood cells (88 vs. 65 × 10(9)/L, respectively; P<0.001) and platelets (296 vs. 430 × 10(9)/L, respectively; P<0.001) at diagnosis, indicating a distinct disease phenotype. No significant difference was observed regarding other hematologic features, including spleen size and hematologic adverse events, during imatinib-based therapies. Cumulative molecular response was inferior in e13a2 patients (P=0.002 for major molecular response; P<0.001 for MR4). No difference was observed with regard to cytogenetic response and overall survival. In conclusion, e13a2 and e14a2 chronic myeloid leukemia seem to represent distinct biological entities. However, clinical outcome under imatinib treatment was comparable and no risk prediction can be made according to e13a2 versus e14a2 BCR-ABL1 transcript type at diagnosis. (clinicaltrials.gov identifier:00055874).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNLABELLED Early assessment of response at 3 months of tyrosine kinase inhibitor treatment has become an important tool to predict favorable outcome. We sought to investigate the impact of relative changes of BCR-ABL transcript levels within the initial 3 months of therapy. In order to achieve accurate data for high BCR-ABL levels at diagnosis, beta glucuronidase (GUS) was used as a reference gene. Within the German CML-Study IV, samples of 408 imatinib-treated patients were available in a single laboratory for both times, diagnosis and 3 months on treatment. In total, 301 of these were treatment-naïve at sample collection. RESULTS (i) with regard to absolute transcript levels at diagnosis, no predictive cutoff could be identified; (ii) at 3 months, an individual reduction of BCR-ABL transcripts to the 0.35-fold of baseline level (0.46-log reduction, that is, roughly half-log) separated best (high risk: 16% of patients, 5-year overall survival (OS) 83% vs 98%, hazard ratio (HR) 6.3, P=0.001); (iii) at 3 months, a 6% BCR-ABL(IS) cutoff derived from BCR-ABL/GUS yielded a good and sensitive discrimination (high risk: 22% of patients, 5-year OS 85% vs 98%, HR 6.1, P=0.002). Patients at risk of disease progression can be identified precisely by the lack of a half-log reduction of BCR-ABL transcripts at 3 months.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tyrosine kinase inhibitors (TKI) have changed the natural course of chronic myeloid leukemia (CML). With the advent of second-generation TKI safety and efficacy issues have gained interest. The randomized CML - Study IV was used for a long-term evaluation of imatinib (IM). 1503 patients have received IM, 1379 IM monotherapy. After a median observation of 7.1 years, 965 patients (64%) still received IM. At 10 years, progression-free survival was 82%, overall survival 84%, 59% achieved MR(5), 72% MR(4.5), 81% MR(4), 89% major molecular remission and 92% MR(2) (molecular equivalent to complete cytogenetic remission). All response levels were reached faster with IM800 mg except MR(5). Eight-year probabilities of adverse drug reactions (ADR) were 76%, of grades 3-4 22%, of non-hematologic 73%, and of hematologic 28%. More ADR were observed with IM800 mg and IM400 mg plus interferon α (IFN). Most patients had their first ADR early with decreasing frequency later on. No new late toxicity was observed. ADR to IM are frequent, but mostly mild and manageable, also with IM 800 mg and IM 400 mg+IFN. The deep molecular response rates indicate that most patients are candidates for IM discontinuation. After 10 years, IM continues to be an excellent initial choice for most patients with CML.Leukemia advance online publication, 13 March 2015; doi:10.1038/leu.2015.36.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors has advanced to a stage where many patients achieve very low or undetectable levels of disease. Remarkably, some of these patients remain in sustained remission when treatment is withdrawn, suggesting that they may be at least operationally cured of their disease. Accurate definition of deep molecular responses (MRs) is therefore increasingly important for optimal patient management and comparison of independent data sets. We previously published proposals for broad standardized definitions of MR at different levels of sensitivity. Here we present detailed laboratory recommendations, developed as part of the European Treatment and Outcome Study for CML (EUTOS), to enable testing laboratories to score MR in a reproducible manner for CML patients expressing the most common BCR-ABL1 variants.Leukemia advance online publication, 27 February 2015; doi:10.1038/leu.2015.29.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hypereosinophilic syndromes are rare disorders in childhood and require extensive differential diagnostic considerations. In the last years the earlier "idiopathic HES" called syndromes could be differentiated into molecular biologically, immunophenotypically and clinically more characterized heterogeneous diseases with high therapeutic and prognostic relevance. Nowadays the term HES summarizes diseases, which go hand in hand with a local or systemic hypereosinophilia (HE) connected with an organ damage. Depending on the cause of the HE one differentiates primary/neoplastic HES (HESN) from secondary/reactive HES (HESR). The latter develops reactively in connection with allergies, parasitosis, medications, neoplasia or a clonal increase of T-lymphocytes among others. With HESN the HE results from a clonal increase of eosinophilic granulocytes. While for some subgroups of the HESN (among others FIP1L1-PDGFRA fusion gene) the administration of a tyrosine kinase inhibitor is a new and effective therapy option, glucocorticoids still represent the medication of first choice for many not PDGFRA associated variants. Different immunomodulatory drugs or cytostatic agents are necessary to allow dose reduction of glucocorticoids. The promising therapy with anti-IL-5 antibodies is still not approved in infancy, could however become a treatment option in the future. Due to the present lack of knowledge about the HES in infancy the establishment of a register should be aimed for the treatment of HES in infancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Signaling via the MET receptor tyrosine kinase has been implicated in crosstalk with cellular responses to DNA damage. Our group previously demonstrated that MET inhibition in tumor cells with deregulated MET activity results in radiosensitization via downregulation of the ATR-CHK1-CDC25 pathway, a major signaling cascade responsible for intra-S and G2/M cell cycle arrest following DNA damage. Here we aimed at studying the potential therapeutic application of ionizing radiation in combination with a MET inhibitor, EMD-1214063, in p53-deficient cancer cells that harbor impaired G1/S checkpoint regulation upon DNA damage. We hypothesized that upon MET inhibition, p53-deficient cells would bypass both G1/S and G2/M checkpoints, promoting premature mitotic entry with substantial DNA lesions and cell death in a greater extent than p53-proficient cells. Our data suggest that p53-deficient cells are more susceptible to EMD-1214063 and combined treatment with irradiation than wildtype p53 lines as inferred from elevated γH2AX expression and increased cytotoxicity. Furthermore, cell cycle distribution profiling indicates constantly lower G1 and higher G2/M population as well as higher expression of a mitotic marker p-histone H3 following the dual treatment in p53 knockdown isogenic variant, compared to the parental counterpart. IMPLICATIONS The concept of MET inhibition-mediated radiosensitization enhanced by p53 deficiency is of high clinical relevance, since p53 is frequently mutated in numerous types of human cancer. The current data point for a therapeutic advantage for an approach combining MET targeting along with DNA damaging agents for MET positive/p53 negative tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The MET receptor tyrosine kinase is often deregulated in human cancers and several MET inhibitors are evaluated in clinical trials. Similarly to EGFR, MET signals through the RAS-RAF-ERK/MAPK pathway which plays key roles in cell proliferation and survival. Mutations of genes encoding for RAS proteins, particularly in KRAS, are commonly found in various tumors and are associated with constitutive activation of the MAPK pathway. It was shown for EGFR, that KRAS mutations render upstream EGFR inhibition ineffective in EGFR-positive colorectal cancers. Currently, there are no clinical studies evaluating MET inhibition impairment due to RAS mutations. To test the impact of RAS mutations on MET targeting, we generated tumor cells responsive to the MET inhibitor EMD1214063 that express KRAS G12V, G12D, G13D and HRAS G12V variants. We demonstrate that these MAPK-activating RAS mutations differentially interfere with MET-mediated biological effects of MET inhibition. We report increased residual ERK1/2 phosphorylation indicating that the downstream pathway remains active in presence of MET inhibition. Consequently, RAS variants counteracted MET inhibition-induced morphological changes as well as anti-proliferative and anchorage-independent growth effects. The effect of RAS mutants was reversed when MET inhibition was combined with MEK inhibitors AZD6244 and UO126. In an in vivo mouse xenograft model, MET-driven tumors harboring mutated RAS displayed resistance to MET inhibition. Taken together, our results demonstrate for the first time in details the role of KRAS and HRAS mutations in resistance to MET inhibition and suggest targeting both MET and MEK as an effective strategy when both oncogenic drivers are expressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deregulated expression of the MET receptor tyrosine kinase has been reported in up to 50% of patients with hepatocellular carcinoma, the most abundant form of liver cancers, and is associated with decreased survival. Consequently, MET is considered as a molecular target in this malignancy, whose progression is highly dependent on extensive angiogenesis. Here we studied the impact of MET small molecule inhibitors on angiogenesis-associated parameters and growth of xenograft liver models consisting of cells expressing MET-mutated variants M1268T and Y1248H, which exhibit constitutive kinase activity. We demonstrate that MET mutations expression is associated with significantly increased production of vascular endothelial growth factor, which is blocked by MET targeting only in cells expressing the M1268T inhibitor-sensitive but not in the Y1248H inhibitor-resistant variant. Decrease in vascular endothelial growth factor production is also associated with reduction of tyrosine phopshorylation of the vascular endothelial growth factor receptor 2 expressed on primary liver sinusoidal endothelial cells and with inhibition of vessel formation. Furthermore, MET inhibition demonstrated an efficient anti-tumor activity and considerable reduction in microvessel density only against the M1268T-derived intrahepatic tumors. Collectively, our data support the role of targeting MET-associated angiogenesis as a major biological determinant for liver tumor growth control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tyrosine kinase inhibitors represent today's treatment of choice in chronic myeloid leukemia (CML). Allogeneic hematopoietic stem cell transplantation (HSCT) is regarded as salvage therapy. This prospective randomized CML-study IIIA recruited 669 patients with newly diagnosed CML between July 1997 and January 2004 from 143 centers. Of these, 427 patients were considered eligible for HSCT and were randomized by availability of a matched family donor between primary HSCT (group A; N=166 patients) and best available drug treatment (group B; N=261). Primary end point was long-term survival. Survival probabilities were not different between groups A and B (10-year survival: 0.76 (95% confidence interval (CI): 0.69-0.82) vs 0.69 (95% CI: 0.61-0.76)), but influenced by disease and transplant risk. Patients with a low transplant risk showed superior survival compared with patients with high- (P<0.001) and non-high-risk disease (P=0.047) in group B; after entering blast crisis, survival was not different with or without HSCT. Significantly more patients in group A were in molecular remission (56% vs 39%; P=0.005) and free of drug treatment (56% vs 6%; P<0.001). Differences in symptoms and Karnofsky score were not significant. In the era of tyrosine kinase inhibitors, HSCT remains a valid option when both disease and transplant risk are considered.Leukemia advance online publication, 20 November 2015; doi:10.1038/leu.2015.281.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treatment of chronic myeloid leukemia (CML) has been profoundly improved by the introduction of tyrosine kinase inhibitors (TKIs). Long-term survival with imatinib is excellent with a 8-year survival rate of ∼88%. Long-term toxicity of TKI treatment, especially carcinogenicity, has become a concern. We analyzed data of the CML study IV for the development of secondary malignancies. In total, 67 secondary malignancies were found in 64 of 1525 CML patients in chronic phase treated with TKI (n=61) and interferon-α only (n=3). The most common malignancies (n⩾4) were prostate, colorectal and lung cancer, non-Hodgkin's lymphoma (NHL), malignant melanoma, non-melanoma skin tumors and breast cancer. The standardized incidence ratio (SIR) for all malignancies excluding non-melanoma skin tumors was 0.88 (95% confidence interval (0.63-1.20)) for men and 1.06 (95% CI 0.69-1.55) for women. SIRs were between 0.49 (95% CI 0.13-1.34) for colorectal cancer in men and 4.29 (95% CI 1.09-11.66) for NHL in women. The SIR for NHL was significantly increased for men and women. An increase in the incidence of secondary malignancies could not be ascertained. The increased SIR for NHL has to be considered and long-term follow-up of CML patients is warranted, as the rate of secondary malignancies may increase over time.Leukemia advance online publication, 26 February 2016; doi:10.1038/leu.2016.20.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Upon activation, platelets release plasma-membrane derived microparticles (PMPs) exposing phosphatidylserine (PS) on their surface. The function and clearance mechanism of these MPs are incompletely understood. As they are pro-coagulant and potentially pro-inflammatory, rapid clearance from the circulation is essential for prevention of thrombotic diseases. The tyrosine kinase receptors Tyro3, Axl and Mer (TAMs) and their ligands protein S and Gas6 are involved in the uptake of PS-exposing apoptotic cells in macrophages and dendritic cells. Both TAMs and their ligands are expressed in the vasculature, the functional significance of which is poorly understood. In this study we investigated how vascular TAMs and their ligands may mediate endothelial uptake of PMPs. PMPs, generated from purified human platelets, were isolated by ultracentrifugation and labeled with biotin or PKH67. The uptake of labeled MPs in the presence of protein S and Gas6 in human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) was monitored by flow cytometry, western blotting and confocal/electron microscopy. We found that both endothelial cell types can phagocytose PMPs, and using TAM-blocking antibodies or siRNA knock-down of individual TAMs we show that the uptake is mediated by endothelial Axl and Gas6. As circulating PMPs-levels were not altered in Gas6-/- mice compared to Gas6+/+ mice, we hypothesize that the Gas6-mediated uptake is not a means to clear the bulk of circulating PMPs but may serve to phagocytose PMPs locally generated at sites of platelet activation and as a way to affect endothelial responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FGFRL1 is a member of the fibroblast growth factor receptor (FGFR) family. Similar to the classical receptors FGFR1-FGFR4, it contains three extracellular Ig-like domains and a single transmembrane domain. However, it lacks the intracellular tyrosine kinase domain that would be required for signal transduction, but instead contains a short intracellular tail with a peculiar histidine-rich motif. This motif has been conserved during evolution from mollusks to echinoderms and vertebrates. Only the sequences of FgfrL1 from a few rodents diverge at the C-terminal region from the canonical sequence, as they appear to have suffered a frameshift mutation within the histidine-rich motif. This mutation is observed in mouse, rat and hamster, but not in the closely related rodents mole rat (Nannospalax) and jerboa (Jaculus), suggesting that it has occurred after branching of the Muridae and Cricetidae from the Dipodidae and Spalacidae. The consequence of the frameshift is a deletion of a few histidine residues and an extension of the C-terminus by about 40 unrelated amino acids. A similar frameshift mutation has also been observed in a human patient with a craniosynostosis syndrome as well as in several patients with colorectal cancer and bladder tumors, suggesting that the histidine-rich motif is prone to mutation. The reason why this motif was conserved during evolution in most species, but not in mice, is not clear.